一个标准的区间表示通常包括一组成对排列的起始点和结束点。找到每个指定区间右侧最近的不重叠区间构成了我们目前的困境。这个任务在许多不同的应用中具有巨大的重要性,比如资源分配和调度,因为它涉及识别不与当前区间相交或包含的下一个区间。
语法
为了帮助理解即将展示的代码演示,让我们首先查看将要使用的语法,然后再深入算法。
// Define the Interval structure struct Interval { int start; int end; }; // Function to find the index of closest non-overlapping interval vector<int> findClosestNonOverlappingInterval(const vector<interval>& intervals) { // Implementation goes here } </interval></int>
算法
解决这个问题需要一个有组织的方法,以逆序迭代区间为中心,同时维护一个指向它们最近的非重叠伙伴的索引堆栈。以下是我们提出的算法如何解决这个问题的简要但有效的步骤 -
创建一个空栈来存储非重叠区间的索引。
使用与间隔数相等的大小初始化一个索引向量,并用-1填充以表示尚未找到非重叠的间隔。
从右到左遍历间隔。
-
如果堆栈非空,并且当前间隔和顶部间隔之间存在横截面积,则继续从所述堆栈中消除(弹出)该最顶部索引。
李> 为了确保准确表示,如果堆栈为空,则将索引位置在表示当前区间的向量中分配为-1。这表示右侧不存在非重叠区间。
强烈建议在尝试此任务之前确保我们指定的堆栈具有元素;否则会出现错误。在确认我们在所述结构上有一个或多个元素后,我们可以通过让当前间隔的向量将其索引值设置为与我们识别的结构上最顶部位置的对应元素相同以及将其相应的索引信息包含到同一结构上来进行操作.
重复步骤 3-7,直到所有间隔都被处理完毕。
返回索引向量。
方法
为了解决这一困境,我们将研究两种不同的策略。
方法 1:暴力破解
解决这个问题的一个可能的策略是使用暴力。本质上,这需要检查每个单独的间隔,然后将其与位于其右侧的所有间隔进行比较,直到没有交叉点的选项变得明显。然而。值得注意的是,利用此方法会产生 O(N^2) 的时间复杂度。其中N表示参与检查程序的区间总数。
语法
vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; }
Example
的中文翻译为:示例
#include#include using namespace std; // Define the Interval structure struct Interval { int start; int end; }; vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; } int main() { // Define intervals vector intervals = {{1, 3}, {2, 4}, {5, 7}, {6, 9}, {8, 10}}; // Find the index of closest non-overlapping interval for each interval vector closestIndices = findClosestNonOverlappingInterval(intervals); // Print the results for (int i = 0; i < intervals.size(); i++) { cout << "Interval [" << intervals[i].start << ", " << intervals[i].end << "] "; if (closestIndices[i] != -1) { cout << "has closest non-overlapping interval at index " << closestIndices[i] << endl; } else { cout << "has no non-overlapping interval to the right" << endl; } } return 0; }
输出
Interval [1, 3] has closest non-overlapping interval at index 2 Interval [2, 4] has closest non-overlapping interval at index 2 Interval [5, 7] has closest non-overlapping interval at index 4 Interval [6, 9] has no non-overlapping interval to the right Interval [8, 10] has no non-overlapping interval to the right
方法二:最优解决方案
一种非常成功的方法涉及利用堆栈作为监视最近的非重叠间隔的手段。该策略的时间复杂度为 O(N),因为我们的任务只需要我们仔细阅读一次间隔。
语法
vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); stack<int> st; for (int i = intervals.size() - 1; i >= 0; i--) { while (!st.empty() && intervals[i].end >= intervals[st.top()].start) { st.pop(); } if (!st.empty()) { result[i] = st.top(); } st.push(i); } return result; }
Example
的中文翻译为:示例
#include#include using namespace std; // Define the Interval structure struct Interval { int start; int end; }; vector<int> findClosestNonOverlappingInterval(const vector<Interval>& intervals) { vector<int> result(intervals.size(), -1); for (int i = 0; i < intervals.size(); i++) { for (int j = i + 1; j < intervals.size(); j++) { if (intervals[i].end < intervals[j].start) { result[i] = j; break; } } } return result; } int main() { // Define intervals vector intervals = {{1, 3}, {2, 4}, {5, 7}, {6, 9}, {8, 10}}; // Find the index of closest non-overlapping interval for each interval vector closestIndices = findClosestNonOverlappingInterval(intervals); // Print the results for (int i = 0; i < intervals.size(); i++) { cout << "Interval [" << intervals[i].start << ", " << intervals[i].end << "] "; if (closestIndices[i] != -1) { cout << "has closest non-overlapping interval at index " << closestIndices[i] << endl; } else { cout << "has no non-overlapping interval to the right" << endl; } } return 0; }
输出
Interval [1, 3] has closest non-overlapping interval at index 2 Interval [2, 4] has closest non-overlapping interval at index 2 Interval [5, 7] has closest non-overlapping interval at index 4 Interval [6, 9] has no non-overlapping interval to the right Interval [8, 10] has no non-overlapping interval to the right
结论
我们的探索目标是在C++中找到每个给定区间右侧最接近的非重叠区间索引的最佳位置。首先,我们深入讨论了语法复杂性,同时提出了一个算法并提出了两种潜在解决方案。作为我们调查的一部分,我们展示了我们的蛮力方法和基于栈的优化方法如何通过成功测试的可执行代码来实现。这种方法使您能够轻松地识别任何特定集合的最接近的非重叠区间。
以上是找到每个给定的N个区间右侧最接近的非重叠区间的索引的详细内容。更多信息请关注PHP中文网其他相关文章!

C#和C 的历史与演变各有特色,未来前景也不同。1.C 由BjarneStroustrup在1983年发明,旨在将面向对象编程引入C语言,其演变历程包括多次标准化,如C 11引入auto关键字和lambda表达式,C 20引入概念和协程,未来将专注于性能和系统级编程。2.C#由微软在2000年发布,结合C 和Java的优点,其演变注重简洁性和生产力,如C#2.0引入泛型,C#5.0引入异步编程,未来将专注于开发者的生产力和云计算。

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C#和C 在面向对象编程(OOP)中的实现方式和特性上有显着差异。 1)C#的类定义和语法更为简洁,支持如LINQ等高级特性。 2)C 提供更细粒度的控制,适用于系统编程和高性能需求。两者各有优势,选择应基于具体应用场景。

从XML转换到C 并进行数据操作可以通过以下步骤实现:1)使用tinyxml2库解析XML文件,2)将数据映射到C 的数据结构中,3)使用C 标准库如std::vector进行数据操作。通过这些步骤,可以高效地处理和操作从XML转换过来的数据。

C#使用自动垃圾回收机制,而C 采用手动内存管理。1.C#的垃圾回收器自动管理内存,减少内存泄漏风险,但可能导致性能下降。2.C 提供灵活的内存控制,适合需要精细管理的应用,但需谨慎处理以避免内存泄漏。

C 在现代编程中仍然具有重要相关性。1)高性能和硬件直接操作能力使其在游戏开发、嵌入式系统和高性能计算等领域占据首选地位。2)丰富的编程范式和现代特性如智能指针和模板编程增强了其灵活性和效率,尽管学习曲线陡峭,但其强大功能使其在今天的编程生态中依然重要。

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

C#适合需要高开发效率和跨平台支持的项目,而C 适用于需要高性能和底层控制的应用。1)C#简化开发,提供垃圾回收和丰富类库,适合企业级应用。2)C 允许直接内存操作,适用于游戏开发和高性能计算。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Dreamweaver Mac版
视觉化网页开发工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能