要检查图表的两个中心之间的给定路径是否符合最短路径,可以通过使用可靠的最短路径将沿给定路径的整个边缘权重与相同中心组合之间的最短距离进行比较方式计算,例如 Dijkstra 计算或 Floyd−Warshall 计算。如果给定路径上的所有边权重与最有限的删除相匹配,那么它就代表最简单的路径。另外:如果整个边权重比最短距离更突出,则表明图表中两个中心之间存在较短的距离。
使用的方法
Dijkstra 算法
具有边缘反转成本的 Floyd−Warshall 算法
贪心算法
Dijkstra 的计算可能是一种流行的图表遍历计算,用于发现图表中源中心与所有其他中心之间最有限的路径。在检查两个中心之间的给定路径是否与最有限路径相关的情况下,Dijkstra 的计算可用于计算这些中心之间的最有限间隔。通过从起始枢纽运行 Dijkstra 的计算,我们得到所有其他枢纽的最有限的间隔。如果给定的路线与两个枢纽之间的最有限距离相匹配,那么它就表示一条实质性且最短的路线。其他:如果给定的路线比计算的最短距离长,则表明图表中存在更短的路线。
算法
创建最短路径(图形、源、目的地):
初始化一组“过去”来存储去往中心的距离,并初始化一个单词参考间隔来存储最有限的距离。
在分隔字典中将源集线器的间隔设置为无限,并将所有其他中心的间隔设置为无限。
虽然存在未访问的节点,
a。选择与分隔词参考距离最小的中心并将其标记为已访问。
b。对于当前节点的每个邻居集线器:
通过将边权重添加到当前节点的距离来计算临时间隔。
如果条件间距小于存放间距,则检修距离。
如果在分离中从源到目标的最短距离与给定路径长度收支平衡,则返回 true(给定路径表示最短路径)。其他情况,返回 false。
此计算利用 Dijkstra 方法来计算最短间隔,然后将从源到目标的最短距离与给定的路径长度进行比较,以确定是否是最短的路径.
示例
#include <iostream> #include <vector> #include <queue> #include <limits> using namespace std; const int INF = numeric_limits<int>::max(); bool shortestPath(vector<vector<pair<int, int>>>& graph, int source, int destination, int pathLength) { int numNodes = graph.size(); vector<int> distances(numNodes, INF); distances[source] = 0; priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; pq.emplace(0, source); while (!pq.empty()) { int u = pq.top().second; int dist = pq.top().first; pq.pop(); if (dist > distances[u]) continue; for (auto& neighbor : graph[u]) { int v = neighbor.first; int weight = neighbor.second; if (dist + weight < distances[v]) { distances[v] = dist + weight; pq.emplace(distances[v], v); } } } return (distances[destination] == pathLength); } int main() { int numNodes = 6; vector<vector<pair<int, int>>> graph(numNodes); // Build the graph graph[0].emplace_back(1, 2); graph[0].emplace_back(2, 5); graph[1].emplace_back(3, 4); graph[1].emplace_back(4, 1); graph[2].emplace_back(3, 2); graph[3].emplace_back(4, 3); graph[3].emplace_back(5, 6); graph[4].emplace_back(5, 2); int source = 0; int destination = 5; int pathLength = 8; bool isShortestPath = shortestPath(graph, source, destination, pathLength); if (isShortestPath) cout << "The given path represents a shortest path." << endl; else cout << "The given path does not represent a shortest path." << endl; return 0; }
输出
The given path does not represent a shortest path.
具有边缘反转成本的 Floyd−Warshall 算法
Floyd-Warshall 计算是一种动态编程计算,用于发现图表中所有中心对之间的最短路径。在检查两个中心之间的给定路径是否与最有限路径相关的情况下,Floyd-Warshall 计算可用于计算图表中所有中心集之间的最短间隔。通过将计算得到的最短距离与给定路径上的全部边权重进行比较,我们就可以确定给定路径是否涉及最有限的路径。如果整个边权重与最短的间隔相匹配,则此时给定的路径可能是图表中两个中心之间最有限的路径。算法
制作一个测量 numNodes x numNodes 的二维格子,并为所有节点集将其初始化为无限 (INF)。
将 dist 的角对角加法设置为 0。
对于图表中权重为 w 的每个协调边 (u, v),将 dist[u][v] 彻底修改为 w,将 dist[v][u] 修改为 w w_reversal,其中 w_reversal 是反转通过边(v,u)的方式获取。
在固定循环后执行 Floyd−Warshall 计算:
对于从 numNodes 到 1 之间的每个中途集线器,请执行以下操作:
对于从 numNodes 到 1 的集线器 i 和 j 的每个聚合,将 dist[i][j] 改进到以下值中的最小值:
距离[i][j]
距离[i][k]距离[k][j]
计算完成后,考虑到边缘反转成本,dist 将包含所有集线器组之间最有限的间隔。
要检查两个枢纽(源和目标)之间的给定路线是否为最简短的路线,请将给定路线的长度与距离 [源] [目的地] 进行比较。如果是的话,给定的方式是最有限的方式。
示例
#include <iostream> #include <vector> using namespace std; const int INF = 1e9; void floydWarshall(vector<vector<int>>& graph, int numNodes) { vector<vector<int>> dist(graph); // Distance matrix initialized with the graph for (int k = 0; k < numNodes; k++) { for (int i = 0; i < numNodes; i++) { for (int j = 0; j < numNodes; j++) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } // Printing the shortest distances cout << "Shortest distances between all pairs of nodes:" << endl; for (int i = 0; i < numNodes; i++) { for (int j = 0; j < numNodes; j++) { if (dist[i][j] == INF) cout << "INF "; else cout << dist[i][j] << " "; } cout << endl; } } int main() { int numNodes = 4; // Number of nodes // Adjacency matrix representation of the graph with edge weights and edge reversal costs vector<vector<int>> graph = { {0, 5, INF, 10}, {INF, 0, 3, INF}, {INF, INF, 0, 1}, {INF, INF, INF, 0} }; floydWarshall(graph, numNodes); return 0; }
输出
Shortest distances between all pairs of nodes: 0 5 8 9 INF 0 3 4 INF INF 0 1 INF INF INF 0
结论
本文探讨了如何检查图表的两个中心之间的给定路径是否代表最有限的路径。它阐明了两种方法:Dijkstra 计算和获取边缘反转的 Floyd-Warshall 计算。 C 中的代码用法说明了这些计算。它还简要说明了计算及其用途。本文旨在帮助读者了解如何在图表中找到最有限的方法,并确定给定的方法是否无疑是最简单的。
以上是检查给定的图中两个节点之间的路径是否表示最短路径的详细内容。更多信息请关注PHP中文网其他相关文章!

C#和C 的学习曲线和开发者体验有显着差异。 1)C#的学习曲线较平缓,适合快速开发和企业级应用。 2)C 的学习曲线较陡峭,适用于高性能和低级控制的场景。

C#和C 在面向对象编程(OOP)中的实现方式和特性上有显着差异。 1)C#的类定义和语法更为简洁,支持如LINQ等高级特性。 2)C 提供更细粒度的控制,适用于系统编程和高性能需求。两者各有优势,选择应基于具体应用场景。

从XML转换到C 并进行数据操作可以通过以下步骤实现:1)使用tinyxml2库解析XML文件,2)将数据映射到C 的数据结构中,3)使用C 标准库如std::vector进行数据操作。通过这些步骤,可以高效地处理和操作从XML转换过来的数据。

C#使用自动垃圾回收机制,而C 采用手动内存管理。1.C#的垃圾回收器自动管理内存,减少内存泄漏风险,但可能导致性能下降。2.C 提供灵活的内存控制,适合需要精细管理的应用,但需谨慎处理以避免内存泄漏。

C 在现代编程中仍然具有重要相关性。1)高性能和硬件直接操作能力使其在游戏开发、嵌入式系统和高性能计算等领域占据首选地位。2)丰富的编程范式和现代特性如智能指针和模板编程增强了其灵活性和效率,尽管学习曲线陡峭,但其强大功能使其在今天的编程生态中依然重要。

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

C#适合需要高开发效率和跨平台支持的项目,而C 适用于需要高性能和底层控制的应用。1)C#简化开发,提供垃圾回收和丰富类库,适合企业级应用。2)C 允许直接内存操作,适用于游戏开发和高性能计算。

C 持续使用的理由包括其高性能、广泛应用和不断演进的特性。1)高效性能:通过直接操作内存和硬件,C 在系统编程和高性能计算中表现出色。2)广泛应用:在游戏开发、嵌入式系统等领域大放异彩。3)不断演进:自1983年发布以来,C 持续增加新特性,保持其竞争力。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

禅工作室 13.0.1
功能强大的PHP集成开发环境

WebStorm Mac版
好用的JavaScript开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Dreamweaver Mac版
视觉化网页开发工具