搜索
首页后端开发Python教程Python程序判断给定矩阵是否为稀疏矩阵

Python程序判断给定矩阵是否为稀疏矩阵

Sep 05, 2023 pm 02:57 PM
- python- 稀疏矩阵- 判断

Python程序判断给定矩阵是否为稀疏矩阵

矩阵是一个矩形数组,其中一组数字按行和列排列。它被称为 m X n 矩阵,其中 m 和 n 是维度。

如果矩阵包含的非零元素数量少于零元素,则称为稀疏矩阵

[0, 0, 3, 0, 0]
[0, 1, 0, 0, 6]
[1, 0, 0, 9, 0]
[0, 0, 2, 0, 0]

上面的矩阵是 4X5 矩阵,这里大部分数字都是零。只有少数元素非零,因此我们可以将其视为稀疏矩阵。

要检查给定矩阵是否是稀疏矩阵,我们需要比较元素和零的总数。如果零元素的个数超过矩阵中元素的一半。那么我们可以将给定的矩阵称为稀疏矩阵。

(m * n)/2

让我们讨论一下确定给定矩阵是否为稀疏矩阵的不同方法。

使用 For 循环

使用 for 循环,我们可以轻松地迭代 python 中的数组元素。

示例

首先,我们将迭代矩阵行并计算每行中存在的零的数量。然后计数值将存储在计数器变量中。

之后,我们将计数器变量中的值与矩阵中的一半元素进行比较,以确定给定矩阵是否是稀疏矩阵。

def isSparse(array, m, n):
   counter = 0
   # Count number of zeros
   for i in range(0, m):
      for j in range(0, n):
         if (array[i][j] == 0):
            counter = counter + 1
   return (counter > ((m * n) // 2))

arr = [[0, 0, 3],
       [0, 0, 0],
       [1, 8, 0]]

print("The original matrix: ")
for row in arr:
   print(row)
print()

# check if the given matrix is sparse matrix or not
if (isSparse(arr, len(arr), len(arr[0]))):
   print("The given matrix is a sparse matrix")
else:
   print("The given matrix is not a sparse matrix")

输出

The original matrix: 
[0, 0, 3]
[0, 0, 0]
[1, 8, 0]

The given matrix is a sparse matrix

上面的矩阵是一个稀疏矩阵。

示例

在此示例中,我们将使用 list.count() 方法来计算循环中每行的零个元素,并将计数存储在计数器变量中。

def isSparse(array, m, n):
   counter = 0
   # Count number of zeros
   for i in array:
      counter += i.count(0)
   return (counter > ((m * n) // 2))

arr = [[0, 0, 3],
       [0, 0, 0],
       [1, 8, 0]]

print("The original matrix: ")
for row in arr:
   print(row)
print()

# check if the given matrix is sparse matrix or not
if (isSparse(arr, len(arr), len(arr[0]))):
   print("The given matrix is a sparse matrix")
else:
   print("The given matrix is not a sparse matrix")

输出

The original matrix: 
[0, 0, 3]
[0, 0, 0]
[1, 8, 0]

The given matrix is a sparse matrix

使用 SciPy 库

通过使用 Python 中的 SciPy 库,我们可以创建稀疏矩阵。在下面的示例中,我们使用 csr_matrix() 函数以压缩稀疏行格式创建稀疏矩阵。

issparse()函数用于检查给定对象是否是稀疏矩阵。

示例

最初,我们将使用嵌套列表创建一个数组,然后使用 csr_matrix() 方法将其转换为稀疏矩阵。

from scipy.sparse import issparse, csr_matrix
arr = [[0, 0, 3],
       [0, 0, 0],
       [1, 8, 0]]

matrix = csr_matrix(arr)

print("The original matrix: ")
print(matrix)
print()

# check if the given matrix is sparse matrix or not
if (issparse(matrix)):
   print("The given matrix is a sparse matrix")
else:
   print("The given matrix is not a sparse matrix")

输出

The original matrix: 
  (0, 2)	3
  (2, 0)	1
  (2, 1)	8

The given matrix is a sparse matrix

csr_matrix() 方法仅将数据点(非零元素)存储在内存中。

注意 - issparse() 方法与输入矩阵有多少元素无关。相反,它检查给定对象是否是 spmatrix 的实例。

以上是Python程序判断给定矩阵是否为稀疏矩阵的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:tutorialspoint。如有侵权,请联系admin@php.cn删除
如何使用numpy创建多维数组?如何使用numpy创建多维数组?Apr 29, 2025 am 12:27 AM

使用NumPy创建多维数组可以通过以下步骤实现:1)使用numpy.array()函数创建数组,例如np.array([[1,2,3],[4,5,6]])创建2D数组;2)使用np.zeros(),np.ones(),np.random.random()等函数创建特定值填充的数组;3)理解数组的shape和size属性,确保子数组长度一致,避免错误;4)使用np.reshape()函数改变数组形状;5)注意内存使用,确保代码清晰高效。

说明Numpy阵列中'广播”的概念。说明Numpy阵列中'广播”的概念。Apr 29, 2025 am 12:23 AM

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增强可读性,和Boostsperformance.Shere'shore'showitworks:1)较小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

说明如何在列表,Array.Array和用于数据存储的Numpy数组之间进行选择。说明如何在列表,Array.Array和用于数据存储的Numpy数组之间进行选择。Apr 29, 2025 am 12:20 AM

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro

举一个场景的示例,其中使用Python列表比使用数组更合适。举一个场景的示例,其中使用Python列表比使用数组更合适。Apr 29, 2025 am 12:17 AM

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

您如何在Python数组中访问元素?您如何在Python数组中访问元素?Apr 29, 2025 am 12:11 AM

toAccesselementsInapyThonArray,useIndIndexing:my_array [2] accessEsthethEthErlement,returning.3.pythonosezero opitedEndexing.1)usepositiveandnegativeIndexing:my_list [0] fortefirstElment,fortefirstelement,my_list,my_list [-1] fornelast.2] forselast.2)

Python中有可能理解吗?如果是,为什么以及如果不是为什么?Python中有可能理解吗?如果是,为什么以及如果不是为什么?Apr 28, 2025 pm 04:34 PM

文章讨论了由于语法歧义而导致的Python中元组理解的不可能。建议使用tuple()与发电机表达式使用tuple()有效地创建元组。(159个字符)

Python中的模块和包装是什么?Python中的模块和包装是什么?Apr 28, 2025 pm 04:33 PM

本文解释了Python中的模块和包装,它们的差异和用法。模块是单个文件,而软件包是带有__init__.py文件的目录,在层次上组织相关模块。

Python中的Docstring是什么?Python中的Docstring是什么?Apr 28, 2025 pm 04:30 PM

文章讨论了Python中的Docstrings,其用法和收益。主要问题:Docstrings对于代码文档和可访问性的重要性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具