本教程将解释如何在 Altair Python 中使用 Jitter 制作 Stripplot。在 Altair Python 中使用带有抖动的条形图可以快速、轻松地可视化包含连续变量和分类变量的数据集。在带状图中,其中一个变量是分类变量,另一个是连续变量。带状图是散点图的一种。通过将数据点视为沿着分类轴的各个点,我们可以看到每个类别的连续变量的分布。通过抖动将数据点分布在绘图上可以更轻松地检查数据的分布方式。
使用mark_circle()函数构建图表,并使用jitter()函数添加抖动效果,我们可以在Altair Python中创建一个带有抖动效果的条形图。首先,必须使用encoding参数来指定图表的x和y变量。然后使用mark_circle()函数创建图表,并使用jitter()函数添加抖动效果。还可以通过修改坐标轴标签、颜色方案和添加标题来修改图表。通过遵循这些简单的方法,我们可以在Altair Python中创建一个易读且有指导意义的带有抖动效果的条形图。
语法
Altair 是一个 Python 库,可用于创建带有抖动的带状图。以下是使用 Altair 创建带有抖动的带状图的语法示例 -
import altair as alt # create a stripplot with jitter using Altair alt.Chart(df).mark_circle(size = 14).encode( x = alt.X('jitter:Q', title = None, axis = alt.Axis(ticks = True, grid = False, labels = False), scale = alt.Scale()), y = alt.Y('Y:Q', scale = alt.Scale()), color = alt.Color('C:N', legend = None), ).transform_calculate( Jitter = 'sqrt(-2*log(rand()))*cos(2*PI*rand())', )
给定的代码使用Altair创建了一个带有抖动效果的条形图。transform_calculate()方法通过计算Python的random模块中rand()方法生成的随机数的自然对数的负两倍的平方根,再乘以两倍pi乘以另一个使用相同rand()方法生成的随机数的余弦值,生成了x轴的高斯抖动。这将抖动值添加到DataFrame的'jitter'列中。然后使用alt.X()方法中的'jitter:Q'编码将这个抖动值映射到x轴上。
示例
以下代码使用Python中的Altair可视化库生成带有抖动效果的条形图。代码首先使用pandas.DataFrame()创建一个自定义数据集,其中包含100个随机生成的x值、y值和类别。x和y值表示图中点的坐标,而类别列确定每个点的颜色。
然后使用 alt.Chart() 函数创建图表对象,并调用 mark_circle() 函数来指定绘图应为圆形。 encode() 方法用于指定如何将数据映射到绘图的视觉属性,例如 x 和 y 位置以及点颜色。在这种情况下,x 编码使用称为抖动的计算字段将抖动添加到 x 轴,而 y 编码指定 y 值。颜色编码使用类别列为点着色,并且 legend=None 参数删除图例。最后,transform_calculate() 函数用于使用基于随机数生成器的公式来计算抖动场,该生成器会向 x 值添加少量随机噪声并将点水平展开。
import altair as alt import pandas as pd import numpy as np # create a custom dataset custom_data = pd.DataFrame({ 'x_values': np.random.randn(100), 'y_values': np.random.randn(100), 'category': np.random.choice(['A', 'B', 'C'], 100) }) # create a stripplot with jitter using Altair alt.Chart(custom_data).mark_circle(size = 14).encode( x=alt.X('jitter:Q', title = None, axis = alt.Axis(ticks = True, grid = False, labels = False), scale = alt.Scale()), y=alt.Y('y_values:Q', scale=alt.Scale()), color=alt.Color('category:N', legend = None), ).transform_calculate( jitter='sqrt(-2*log(random()))*cos(2*PI*random())', )
输出
示例
此示例展示了如何使用 Iris 数据集在 Altair 中创建带有抖动的带状图。该代码首先从 vega_datasets 库导入必要的库,包括 Altair 和 Iris 数据集。然后,它使用 mark_circle 方法创建一个 Altair 图表,为每个数据点创建一个圆,并分别使用 Altair X、Y 和 Color 类对 x、y 和颜色变量进行编码。
此示例展示了如何使用 Iris 数据集在 Altair 中创建带有抖动的带状图。该代码首先从 vega_datasets 库导入必要的库,包括 Altair 和 Iris 数据集。然后,它使用 mark_circle 方法创建一个 Altair 图表,为每个数据点创建一个圆,并分别使用 Altair X、Y 和 Color 类对 x、y 和颜色变量进行编码。
import altair as alt from vega_datasets import data # load the Iris dataset iris = data.iris() # create a stripplot with jitter using Altair alt.Chart(iris).mark_circle(size = 14).encode( x = alt.X('jitter:Q', title = None, axis = alt.Axis(ticks = True, grid = False, labels = False), scale = alt.Scale()), y = alt.Y('petalWidth:Q', scale = alt.Scale()), color = alt.Color('species:N', legend = None), ).transform_calculate( jitter = 'sqrt(-2*log(random()))*cos(2*PI*random())', )
输出
Conclusion
总之,使用抖动来创建条形图对于显示数据点的分布和变异性非常有用。Python的Altair包使得完成这个操作变得简单而有效。用户可以按照本文提供的说明,包括导入所需的库、加载数据和编码x、y和颜色变量,制作一个有教育意义和美观的图表。通过使用transform_calculate方法来包含抖动,图表进一步改进,因为现在更容易识别数据中的特定数据点和模式。
总体而言,Altair 是一款强大的 Python 数据可视化工具,使用抖动创建带状图只是其功能的一个例证。您可以通过尝试各种数据集和视觉编码来制作各种强大且具有教育意义的可视化。得益于 Altair 简单的语法和强大的功能,数据可视化的可能性是无限的。
以上是如何在Altair Python中制作带有Jitter的Stripplot?的详细内容。更多信息请关注PHP中文网其他相关文章!

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

Dreamweaver Mac版
视觉化网页开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

Dreamweaver CS6
视觉化网页开发工具