在本文中,我们将讨论一个问题,即找到给定范围内具有第k位设置的元素的数量,例如 −
Input : arr[] = { 4, 5, 7, 2 } Query 1: L = 2, R = 4, K = 4 Query 2: L = 3, R = 5, K = 1 Output : 0 1
我们将通过一种蛮力的方法来解决这个问题,并看看这种方法是否适用于更高的约束条件。如果不适用,那么我们尝试思考一种新的高效方法。
在这种方法中,我们只需遍历范围并检查每个元素的第k位是否设置,如果是,则增加计数。
#include<bits/stdc++.h> using namespace std; #define MAX_BITS 32 bool Kset(int n, int k) { // to check if kth bit is set if (n & (1 << (k - 1))) return true; return false; } int query(int L, int R, int K, int arr[]) { int count = 0; // counter to keep count of number present in the range for (int i = L; i <= R; i++) { // traversing the range if (Kset(arr[i], K)) { count++; } } return count; } int main() { int arr[] = { 4, 5, 7, 2 }; // given array int n = sizeof(arr) / sizeof(arr[0]); // size of our array int queries[][3] = { // given L, R and k { 2, 4, 4 }, { 3, 5, 1 } }; int q = sizeof(queries) / sizeof(queries[0]); // number of queries for (int i = 0; i < q; i++) { int L = queries[i][0] - 1; int R = queries[i][1] - 1; int K = queries[i][2]; cout << query(L, R, K, arr) << "\n"; } return 0; }
0 1
上述方法的时间复杂度为O(N*Q),其中N是数组的大小,Q是给定的查询数量;如您所见,这种方法对于更高的约束条件不适用,因为它将花费太多时间,所以现在我们将尝试制作一个高效的程序。
在这种方法中,我们将维护一个二维前缀和数组,该数组将保持每个索引位置使用的位数,并且我们可以在O(1)的复杂度中计算出答案。
#include<bits/stdc++.h> using namespace std; #define bits 32 // number of bits int P[100000][bits+1]; bool Kset(int n, int k) { if (n & (1 << (k - 1))) return true; return false; } void prefixArray(int n, int arr[]) { // building the prefix array for (int i = 0; i <= bits; i++) { P[0][i] = 0; // setting every bits initial count = 0 } for (int i = 0; i < n; i++) { for (int j = 1; j <= bits; j++) { bool flag = Kset(arr[i], j); if (i) // we add previous count to the latest count(0) P[i][j] = P[i - 1][j]; if (flag) { // if jth bit is set so we increase the count P[i][j]++; } } } } int query(int L, int R, int K) { if (L) // if L not equal to 0 then we return the prefix at R subtracted with prefix at L-1 return P[R][K] - P[L - 1][K]; else return P[R][K]; } int main() { int arr[] = { 8, 9, 1, 3 }; // given array int n = sizeof(arr) / sizeof(arr[0]); // size of given array int queries[][3] = { { 1, 3, 4 }, { 2, 4, 1 } }; prefixArray(n, arr); // calling the function to create prefix array int q = sizeof(queries) / sizeof(queries[0]); // number of queries for (int i = 0; i < q; i++) { int L = queries[i][0] - 1; int R = queries[i][1] - 1; int K = queries[i][2]; cout << query(L, R, K) << "\n"; } return 0; }
2 3
由于我们正在维护帮助我们以O(1)的时间复杂度找到答案的前缀数组,所以我们的时间复杂度大大降低到了O(N),其中N是给定数组的大小。
在这个程序中,我们为数组的每个索引维护一个前缀计数器,用于计算该索引之前使用的每个位数。现在,我们已经存储了每个位数的前缀计数,所以对于第k位的计数,我们需要用第R索引处的第k位的前缀计数减去第L-1索引处的第k位的前缀计数,这就是我们的答案。
在本文中,我们解决了一个问题,即解决具有第K位设置的范围内数组元素的查询。我们还学习了这个问题的C++程序以及我们解决这个问题的完整方法(普通和高效)。我们可以用其他语言(如C、Java、Python和其他语言)编写相同的程序。希望您会觉得这篇文章有帮助。
以上是使用C++编写的查询在范围内具有第K位设置的数组元素数量的代码的详细内容。更多信息请关注PHP中文网其他相关文章!