Iris,一个多元花卉数据集,是最有用的 Pyhton scikit-learn 数据集之一。它分为 3 类,每类 50 个实例,包含三种鸢尾花(山鸢尾、维吉尼亚鸢尾和杂色鸢尾)的萼片和花瓣部分的测量值。除此之外,Iris 数据集包含这三个物种中每个物种的 50 个实例,并由四个特征组成,即 sepal_length (cm)、sepal_width (cm)、petal_length (cm)、petal_width (cm)。
我们可以使用主成分分析(PCA)将 IRIS 数据集转换为具有 2 个特征的新特征空间。
步骤
我们可以按照下面给出的步骤,使用 Python 中的 PCA 将 IRIS 数据集转换为 2 特征数据集 -
第 1 步 - 首先,从 scikit-learn 导入必要的包。我们需要导入数据集和分解包。
步骤 2 - 加载 IRIS 数据集。
步骤 3 - 打印有关数据集的详细信息。
步骤 4 - 初始化主成分分析 (PCA) 并应用 fit() 函数来拟合数据。 p>
步骤 5 - 将数据集转换为新维度,即 2 特征数据集。
示例
在下面的示例中,我们将使用上述步骤通过 PCA 将 scikit-learn IRIS 植物数据集转换为 2 个特征。
# Importing the necessary packages from sklearn import datasets from sklearn import decomposition # Load iris plant dataset iris = datasets.load_iris() # Print details about the dataset print('Features names : '+str(iris.feature_names)) print('\n') print('Features size : '+str(iris.data.shape)) print('\n') print('Target names : '+str(iris.target_names)) print('\n') X_iris, Y_iris = iris.data, iris.target # Initialize PCA and fit the data pca_2 = decomposition.PCA(n_components=2) pca_2.fit(X_iris) # Transforming iris data to new dimensions(with 2 features) X_iris_pca2 = pca_2.transform(X_iris) # Printing new dataset print('New Dataset size after transformations: ', X_iris_pca2.shape)
输出
它将产生以下输出 -
Features names : ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] Features size : (150, 4) Target names : ['setosa' 'versicolor' 'virginica'] New Dataset size after transformations: (150, 2)
如何将 Iris 数据集转换为 3 特征数据集?
我们可以使用称为主成分分析(PCA)的统计方法将 Iris 数据集转换为具有 3 个特征的新特征空间。 PCA通过分析原始数据集的特征,基本上将数据线性投影到新的特征空间中。
PCA 背后的主要概念是选择数据的“主要”特征并基于它们构建特征。它将为我们提供新的数据集,该数据集的大小较小,但具有与原始数据集相同的信息。
示例
在下面的示例中,我们将使用 PCA 转换 scikit-learn Iris 植物数据集(用 3 个组件初始化)。
# Importing the necessary packages from sklearn import datasets from sklearn import decomposition # Load iris plant dataset iris = datasets.load_iris() # Print details about the dataset print('Features names : '+str(iris.feature_names)) print('\n') print('Features size : '+str(iris.data.shape)) print('\n') print('Target names : '+str(iris.target_names)) print('\n') print('Target size : '+str(iris.target.shape)) X_iris, Y_iris = iris.data, iris.target # Initialize PCA and fit the data pca_3 = decomposition.PCA(n_components=3) pca_3.fit(X_iris) # Transforming iris data to new dimensions(with 2 features) X_iris_pca3 = pca_3.transform(X_iris) # Printing new dataset print('New Dataset size after transformations : ', X_iris_pca3.shape) print('\n') # Getting the direction of maximum variance in data print("Components : ", pca_3.components_) print('\n') # Getting the amount of variance explained by each component print("Explained Variance:",pca_3.explained_variance_) print('\n') # Getting the percentage of variance explained by each component print("Explained Variance Ratio:",pca_3.explained_variance_ratio_) print('\n') # Getting the singular values for each component print("Singular Values :",pca_3.singular_values_) print('\n') # Getting estimated noise covariance print("Noise Variance :",pca_3.noise_variance_)
输出
它将产生以下输出 -
Features names : ['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)'] Features size : (150, 4) Target names : ['setosa' 'versicolor' 'virginica'] Target size : (150,) New Dataset size after transformations : (150, 3) Components : [[ 0.36138659 -0.08452251 0.85667061 0.3582892 ] [ 0.65658877 0.73016143 -0.17337266 -0.07548102] [-0.58202985 0.59791083 0.07623608 0.54583143]] Explained Variance: [4.22824171 0.24267075 0.0782095 ] Explained Variance Ratio: [0.92461872 0.05306648 0.01710261] Singular Values : [25.09996044 6.01314738 3.41368064] Noise Variance : 0.02383509297344944
以上是如何在Python中将Scikit-learn的IRIS数据集转换为只有两个特征的数据集?的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1
功能强大的PHP集成开发环境