生成树是连接所有顶点的有向无向图子图。图中可以存在许多生成树。每个图上的最小生成树(MST)的权重相同或小于所有其他生成树。权重被分配给生成树的边,总和是分配给每个边的权重。由于 V 是图中的顶点数,因此最小生成树的边数为 (V - 1),其中 V 是边数。
使用 Kruskal 算法查找最小生成树
所有边应按权重非降序排列。
选择最小的边。如果未形成环,则包含该边。
应执行步骤 2,直到生成树具有 (V-1) 条边。
在这种情况下,我们被告知要使用贪婪方法。贪心选项是选择权重最小的边。举例来说:该图的最小生成树为 (9-1)= 8 条边。
After sorting: Weight Src Dest 21 27 26 22 28 22 22 26 25 24 20 21 24 22 25 26 28 26 27 22 23 27 27 28 28 20 27 28 21 22 29 23 24 30 25 24 31 21 27 34 23 25
现在我们需要根据排序选取所有边。
包含边 26-27->,因为没有形成环
边包括 28-22->,因为没有形成环路
包括边缘 26-25->,因为没有形成环路。
包括边缘 20-21->,因为没有形成环路
边 22-25-> 被包含,因为没有形成环路。
边 28-26-> 因环路形成而被丢弃
边 22-23-> > 包括,因为没有形成环路
边 27-28-> 因环路形成而被丢弃
边线 20-27-> 包括,因为没有形成环路
边21-22->因形成环而被丢弃
边23-24->因未形成环而被包括
由于边的数量为(V-1),所以算法到此结束。
示例
#include <stdio.h> #include <stdlib.h> #include <string.h> struct Edge { int src, dest, weight; }; struct Graph { int V, E; struct Edge* edge; }; struct Graph* createGraph(int V, int E){ struct Graph* graph = (struct Graph*)(malloc(sizeof(struct Graph))); graph->V = V; graph->E = E; graph->edge = (struct Edge*)malloc(sizeof( struct Edge)*E); return graph; } struct subset { int parent; int rank; }; int find(struct subset subsets[], int i){ if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } void Union(struct subset subsets[], int x, int y){ int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; else{ subsets[yroot].parent = xroot; subsets[xroot].rank++; } } int myComp(const void* a, const void* b){ struct Edge* a1 = (struct Edge*)a; struct Edge* b1 = (struct Edge*)b; return a1->weight > b1->weight; } void KruskalMST(struct Graph* graph){ int V = graph->V; struct Edge result[V]; int e = 0; int i = 0; qsort(graph->edge, graph->E, sizeof(graph->edge[0]), myComp); struct subset* subsets = (struct subset*)malloc(V * sizeof(struct subset)); for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } while (e < V - 1 && i < graph->E) { struct Edge next_edge = graph->edge[i++]; int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) { result[e++] = next_edge; Union(subsets, x, y); } } printf("Following are the edges in the constructed MST\n"); int minimumCost = 0; for (i = 0; i < e; ++i){ printf("%d -- %d == %d\n", result[i].src, result[i].dest, result[i].weight); minimumCost += result[i].weight; } printf("Minimum Cost Spanning tree : %d",minimumCost); return; } int main(){ /* Let us create the following weighted graph 30 0--------1 | \ | 26| 25\ |15 | \ | 22--------23 24 */ int V = 24; int E = 25; struct Graph* graph = createGraph(V, E); graph->edge[0].src = 20; graph->edge[0].dest = 21; graph->edge[0].weight = 30; graph->edge[1].src = 20; graph->edge[1].dest = 22; graph->edge[1].weight = 26; graph->edge[2].src = 20; graph->edge[2].dest = 23; graph->edge[2].weight = 25; graph->edge[3].src = 21; graph->edge[3].dest = 23; graph->edge[3].weight = 35; graph->edge[4].src = 22; graph->edge[4].dest = 23; graph->edge[4].weight = 24; KruskalMST(graph); return 0; }
输出
Following are the edges in the constructed MST 22 -- 23 == 24 20 -- 23 == 25 20 -- 21 == 30 Minimum Cost Spanning tree : 79
结论
本教程演示了如何使用 Kruskal 的最小生成树算法-贪心法和 C++ 代码来解决此问题。我们还可以用java、python和其他语言编写这段代码。它是根据克鲁斯卡尔的概念建模的。该程序查找给定图中的最短生成树。我们希望本教程对您有所帮助。
以上是Kruskal的最小生成树算法-贪婪算法在C++中的详细内容。更多信息请关注PHP中文网其他相关文章!

C 学习者和开发者可以从StackOverflow、Reddit的r/cpp社区、Coursera和edX的课程、GitHub上的开源项目、专业咨询服务以及CppCon等会议中获得资源和支持。1.StackOverflow提供技术问题的解答;2.Reddit的r/cpp社区分享最新资讯;3.Coursera和edX提供正式的C 课程;4.GitHub上的开源项目如LLVM和Boost提升技能;5.专业咨询服务如JetBrains和Perforce提供技术支持;6.CppCon等会议有助于职业

C#适合需要高开发效率和跨平台支持的项目,而C 适用于需要高性能和底层控制的应用。1)C#简化开发,提供垃圾回收和丰富类库,适合企业级应用。2)C 允许直接内存操作,适用于游戏开发和高性能计算。

C 持续使用的理由包括其高性能、广泛应用和不断演进的特性。1)高效性能:通过直接操作内存和硬件,C 在系统编程和高性能计算中表现出色。2)广泛应用:在游戏开发、嵌入式系统等领域大放异彩。3)不断演进:自1983年发布以来,C 持续增加新特性,保持其竞争力。

C 和XML的未来发展趋势分别为:1)C 将通过C 20和C 23标准引入模块、概念和协程等新特性,提升编程效率和安全性;2)XML将继续在数据交换和配置文件中占据重要地位,但会面临JSON和YAML的挑战,并朝着更简洁和易解析的方向发展,如XMLSchema1.1和XPath3.1的改进。

现代C 设计模式利用C 11及以后的新特性实现,帮助构建更灵活、高效的软件。1)使用lambda表达式和std::function简化观察者模式。2)通过移动语义和完美转发优化性能。3)智能指针确保类型安全和资源管理。

C 多线程和并发编程的核心概念包括线程的创建与管理、同步与互斥、条件变量、线程池、异步编程、常见错误与调试技巧以及性能优化与最佳实践。1)创建线程使用std::thread类,示例展示了如何创建并等待线程完成。2)同步与互斥使用std::mutex和std::lock_guard保护共享资源,避免数据竞争。3)条件变量通过std::condition_variable实现线程间的通信和同步。4)线程池示例展示了如何使用ThreadPool类并行处理任务,提高效率。5)异步编程使用std::as

C 的内存管理、指针和模板是核心特性。1.内存管理通过new和delete手动分配和释放内存,需注意堆和栈的区别。2.指针允许直接操作内存地址,使用需谨慎,智能指针可简化管理。3.模板实现泛型编程,提高代码重用性和灵活性,需理解类型推导和特化。

C 适合系统编程和硬件交互,因为它提供了接近硬件的控制能力和面向对象编程的强大特性。1)C 通过指针、内存管理和位操作等低级特性,实现高效的系统级操作。2)硬件交互通过设备驱动程序实现,C 可以编写这些驱动程序,处理与硬件设备的通信。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

禅工作室 13.0.1
功能强大的PHP集成开发环境

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

Dreamweaver CS6
视觉化网页开发工具

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。