在本文中,我们将找到方程 n = x + n ⊕ x 的解的数量,即我们需要找到给定值 n 的可能的 x 值的数量,使得 n = x + n ⊕ x,其中 ⊕ 表示异或操作。
现在我们将讨论关于 n = x + n ⊕ x 的解的数量的完整信息,并提供适当的示例。
我们可以简单地使用暴力法来找到解的数量,即对于给定的 n 值,我们从 0 开始应用每个整数值的 x,并验证方程是否满足,x 的值应小于或等于 n,因为将大于 n 的值与 (n ⊕ x) 相加将永远不会返回 n 作为答案。
找到一个使 n = 3 成立的 x 的值?
n = x + n ⊕ x Putting x = 0, 3 = 0 + 3 ⊕ 0 3 ⊕ 0 = 3, 3 = 3 LHS = RHS(x = 0 satisfy the equation) So, x = 0 is one of the solution
#include <bits/stdc++.h> using namespace std; int main(){ int n = 3, c=0; for (int x = 0; x <= n; ++x)// loop for giving value of x from 0 to n if (n == x + n ^ x)//checking if value of x satisfies the equation ++c; cout << "Number of possible solutions : " << c; return 0; }
Number of possible solutions : 4
这是一个简单的C++程序,通过应用暴力方法来找到n = x + n ⊕ x的解的数量。
在这种方法中,如果我们看一下二进制形式的n,我们需要找到设置为1的位数,并且根据方程,我们可以说如果n被设置了,那么x要么被设置,要么n ⊕ x被设置,因为1 ⊕ 1 = 0。这意味着n ⊕ x没有被设置,所以现在我们可以得出结论,对于n中的每个设置位,排列的数量为2^(设置位的数量)。
#include <bits/stdc++.h> using namespace std; int main (){ int n = 3, no_of_setbits = 0; // initialising n with value and taking count of set bits as 0 while (n != 0){ no_of_setbits = no_of_setbits + (n % 2); // checking if num contains set bit. n = n / 2; } int result = 1 << no_of_setbits; // calculating no. of possible solution with 2^setbits cout << " Number of possible solutions : " << result; return 0; }
Number of possible solutions : 4
The time complexity of this approach is O(n), as we are applying Brute force here. We can apply more efficient methods to improve the efficiency of the program.
In this article, we solve a problem to find a number of solution −
n = x + n ⊕ x. We also learned the C++ program for this problem and the complete approach by which we solved this problem. We can write the same program in other languages such as C, java, python, and other languages. Hope you find this article helpful.
以上是使用C++编程,找到方程n = x + n * x的解的个数的详细内容。更多信息请关注PHP中文网其他相关文章!