搜索
首页后端开发Python教程如何在Python中创建累积曲线图?

ogive图形以图形化方式表示一组数据的累积分布函数(CDF),有时也称为累积频率曲线。它用于检查数据分布并发现模式和趋势。Matplotlib、Pandas和Numpy是Python提供的一些库和工具,用于创建ogive图形。在本教程中,我们将看看如何使用Matplotlib在Python中生成ogive图形。

要创建一个累积曲线图,我们需要导入所需的库。在这个例子中,我们将使用Matplotlib,Pandas和Numpy。Matplotlib是一个流行的数据可视化库,用于在Python中创建交互式图表和图形。另一方面,Numpy用于执行复杂的数学运算。Pandas是另一个广泛使用的Python库,专门用于数据操作和分析。

语法

plt.plot(*np.histogram(data, bins), 'o-')

在这个语法中,'data'是用来创建累积曲线图的数据集。数据的频率分布由'np.histogram'函数确定,该函数还返回直方图的值和箱子边界。使用'plt.plot'创建累积曲线图,使用' 'o-' '格式字符串来绘制数据点并用线连接它们。然后,'*'运算符将直方图的值和箱子边界作为单独的参数传递给'plt.plot'。

示例

这是一个简单的示例,创建了一个 ogive 图来可视化一个骰子投掷列表的累积频率分布。

import numpy as np
import matplotlib.pyplot as plt

# List of dice rolls
rolls = [1, 2, 3, 4, 5, 6, 3, 6, 2, 5, 1, 6, 4, 2, 3, 5, 1, 4, 6, 3]

# Calculate the cumulative frequency
bins = np.arange(0, 8, 1)
freq, bins = np.histogram(rolls, bins=bins)
cumulative_freq = np.cumsum(freq)

# Create the ogive graph
plt.plot(bins[1:], cumulative_freq, '-o')
plt.xlabel('Dice Rolls')
plt.ylabel('Cumulative Frequency')
plt.title('Ogive Graph of Dice Rolls')
plt.show()

首先,我们创建了一个ogive图来可视化一组骰子掷出结果的累积频率分布,通过导入必要的模块NumPy和Matplotlib来实现。然后,代码定义了一组骰子掷出结果,并使用NumPy的直方图函数来生成数据的“直方图”,指定数据的分组数和取值范围。接下来,使用NumPy的'cumsum'函数表示数据的累积频率。

最后,使用Matplotlib的“plot”函数将累积频率绘制为对数图,其中每个箱的上限用作x轴,形成ogive图。所得的ogive图显示了骰子投掷的累积频率分布,其中x轴表示投掷的值,y轴表示这些值在某一点之前的累积频率。这个图可以用来分析骰子投掷的频率和分布。

输出

如何在Python中创建累积曲线图?

示例

这个示例演示了一个ogive图,用于可视化0到100之间的500个随机数的分布。

import numpy as np
import matplotlib.pyplot as plt

# Generate random data
data = np.random.randint(0, 100, 500)

# Calculate the cumulative frequency
bins = np.arange(0, 110, 10)
freq, bins = np.histogram(data, bins=bins)
cumulative_freq = np.cumsum(freq)

# Create the ogive graph
plt.plot(bins[1:], cumulative_freq, '-o')
plt.xlabel('Data')
plt.ylabel('Cumulative Frequency')
plt.title('Ogive Graph of Random Data')
plt.show()

在这个例子中,我们首先使用NumPy生成一个包含500个0到100之间的随机数的数据集。然后使用NumPy计算出数据的累积频率,每个频率的区间宽度为10。最后,使用Matplotlib绘制累积频率与每个区间的上限之间的关系,生成ogive图。这个例子演示了如何使用Python和随机生成的数据创建ogive图。

输出

如何在Python中创建累积曲线图?

我们学会了使用Matplotlib模块在Python中创建累积曲线图,这是一个简单的过程,使用matplotlib库。通过加载数据、计算累积频率并绘制结果,您可以轻松地可视化数据集的分布,并识别任何模式或趋势。您可以使用标签、标题和样式自定义您的图形,使其更具视觉吸引力和信息量。累积曲线图是统计分析中有用的工具,可以表示各种数据,从收入分布到考试成绩。

以上是如何在Python中创建累积曲线图?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:tutorialspoint。如有侵权,请联系admin@php.cn删除
在Python阵列上可以执行哪些常见操作?在Python阵列上可以执行哪些常见操作?Apr 26, 2025 am 12:22 AM

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

在哪些类型的应用程序中,Numpy数组常用?在哪些类型的应用程序中,Numpy数组常用?Apr 26, 2025 am 12:13 AM

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

您什么时候选择在Python中的列表上使用数组?您什么时候选择在Python中的列表上使用数组?Apr 26, 2025 am 12:12 AM

useanArray.ArarayoveralistinpythonwhendeAlingwithHomeSdata,performance-Caliticalcode,orinterFacingWithCcccode.1)同质性data:arrayssavememorywithtypedelements.2)绩效code-performance-clitionalcode-clitadialcode-critical-clitical-clitical-clitical-clitaine code:araysofferferbetterperperperformenterperformanceformanceformancefornalumericalicalialical.3)

所有列表操作是否由数组支持,反之亦然?为什么或为什么不呢?所有列表操作是否由数组支持,反之亦然?为什么或为什么不呢?Apr 26, 2025 am 12:05 AM

不,notalllistoperationsareSupportedByArrays,andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,wheremactssperformance.2)listssdonotguaranteeconeeconeconstanttanttanttanttanttanttanttanttimecomplecomecomecomplecomecomecomecomecomecomplecomectaccesslikearrikearraysodo。

您如何在python列表中访问元素?您如何在python列表中访问元素?Apr 26, 2025 am 12:03 AM

toAccesselementsInapythonlist,useIndIndexing,负索引,切片,口头化。1)indexingStartSat0.2)否定indexingAccessesessessessesfomtheend.3)slicingextractsportions.4)iterationerationUsistorationUsisturessoreTionsforloopsoreNumeratorseforeporloopsorenumerate.alwaysCheckListListListListlentePtotoVoidToavoIndexIndexIndexIndexIndexIndExerror。

Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具