先来看一个面试场景:
面试官:来说说,一千万的数据,你是怎么查询的? 小哥哥:直接分页查询,使用limit分页。 面试官:有实操过吗? 小哥哥:肯定有呀
也许有些朋友根本就没遇过上千万数据量的表,也不清楚查询上千万数据量的时候会发生什么。
今天就来带大家实操一下,这次是基于MySQL 5.7.26版本做测试
准备数据
没有一千万的数据怎么办?
创建呗
代码创建一千万?那是不可能的,太慢了,可能真的要跑一天。可以采用数据库脚本执行速度快很多。
创建表
CREATE TABLE `user_operation_log` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `ip` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `op_data` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr1` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr3` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr4` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr5` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr6` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr7` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr8` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr9` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr10` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr11` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr12` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, PRIMARY KEY (`id`) USING BTREE ) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
创建数据脚本
采用批量插入,效率会快很多,而且每1000条数就commit,数据量太大,也会导致批量插入效率慢
DELIMITER ;; CREATE PROCEDURE batch_insert_log() BEGIN DECLARE i INT DEFAULT 1; DECLARE userId INT DEFAULT 10000000; set @execSql = 'INSERT INTO `test`.`user_operation_log`(`user_id`, `ip`, `op_data`, `attr1`, `attr2`, `attr3`, `attr4`, `attr5`, `attr6`, `attr7`, `attr8`, `attr9`, `attr10`, `attr11`, `attr12`) VALUES'; set @execData = ''; WHILE i<=10000000 DO set @attr = "'测试很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长的属性'"; set @execData = concat(@execData, "(", userId + i, ", '10.0.69.175', '用户登录操作'", ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ")"); if i % 1000 = 0 then set @stmtSql = concat(@execSql, @execData,";"); prepare stmt from @stmtSql; execute stmt; DEALLOCATE prepare stmt; commit; set @execData = ""; else set @execData = concat(@execData, ","); end if; SET i=i+1; END WHILE; END;; DELIMITER ;
开始测试
田哥的电脑配置比较低:win10 标压渣渣i5 读写约500MB的SSD
由于配置低,本次测试只准备了3148000条数据,占用了磁盘5G(还没建索引的情况下),跑了38min,电脑配置好的同学,可以插入多点数据测试
SELECT count(1) FROM `user_operation_log`
返回结果:3148000
三次查询时间分别为:
14060 ms 13755 ms 13447 ms
普通分页查询
MySQL 支持 LIMIT 语句来选取指定的条数数据, Oracle 可以使用 ROWNUM 来选取。
MySQL分页查询语法如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
第一个参数指定第一个返回记录行的偏移量 第二个参数指定返回记录行的最大数目
下面我们开始测试查询结果:
SELECT * FROM `user_operation_log` LIMIT 10000, 10
查询3次时间分别为:
59 ms 49 ms 50 ms
这样看起来速度还行,不过是本地数据库,速度自然快点。
换个角度来测试
相同偏移量,不同数据量
SELECT * FROM `user_operation_log` LIMIT 10000, 10 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 1000 SELECT * FROM `user_operation_log` LIMIT 10000, 10000 SELECT * FROM `user_operation_log` LIMIT 10000, 100000 SELECT * FROM `user_operation_log` LIMIT 10000, 1000000
查询时间如下:
数量 | 第一次 | 第二次 | 第三次 |
---|---|---|---|
10条 | 53ms | 52ms | 47ms |
100条 | 50ms | 60ms | 55ms |
1000条 | 61ms | 74ms | 60ms |
10000条 | 164ms | 180ms | 217ms |
100000条 | 1609ms | 1741ms | 1764ms |
1000000条 | 16219ms | 16889ms | 17081ms |
从上面结果可以得出结束:数据量越大,花费时间越长
相同数据量,不同偏移量
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT * FROM `user_operation_log` LIMIT 1000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 100000, 100 SELECT * FROM `user_operation_log` LIMIT 1000000, 100
偏移量 | 第一次 | 第二次 | 第三次 |
---|---|---|---|
100 | 36ms | 40ms | 36ms |
1000 | 31ms | 38ms | 32ms |
10000 | 53ms | 48ms | 51ms |
100000 | 622ms | 576ms | 627ms |
1000000 | 4891ms | 5076ms | 4856ms |
从上面结果可以得出结束:偏移量越大,花费时间越长
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT id, attr FROM `user_operation_log` LIMIT 100, 100
如何优化
既然我们经过上面一番的折腾,也得出了结论,针对上面两个问题:偏移大、数据量大,我们分别着手优化
优化偏移量大问题
采用子查询方式
我们可以先定位偏移位置的 id,然后再查询数据
SELECT * FROM `user_operation_log` LIMIT 1000000, 10 SELECT id FROM `user_operation_log` LIMIT 1000000, 1 SELECT * FROM `user_operation_log` WHERE id >= (SELECT id FROM `user_operation_log` LIMIT 1000000, 1) LIMIT 10
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 4818ms |
第二条(无索引情况下) | 4329ms |
第二条(有索引情况下) | 199ms |
第三条(无索引情况下) | 4319ms |
第三条(有索引情况下) | 201ms |
从上面结果得出结论:
第一条花费的时间最大,第三条比第一条稍微好点 子查询使用索引速度更快
缺点:只适用于id递增的情况
id非递增的情况可以使用以下写法,但这种缺点是分页查询只能放在子查询里面
注意:某些 mysql 版本不支持在 in 子句中使用 limit,所以采用了多个嵌套select
SELECT * FROM `user_operation_log` WHERE id IN (SELECT t.id FROM (SELECT id FROM `user_operation_log` LIMIT 1000000, 10) AS t)
采用 id 限定方式
这种方法要求更高些,id必须是连续递增,而且还得计算id的范围,然后使用 between,sql如下
SELECT * FROM `user_operation_log` WHERE id between 1000000 AND 1000100 LIMIT 100 SELECT * FROM `user_operation_log` WHERE id >= 1000000 LIMIT 100
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 22ms |
第二条 | 21ms |
从结果可以看出这种方式非常快
注意:这里的 LIMIT 是限制了条数,没有采用偏移量
优化数据量大问题
返回结果的数据量也会直接影响速度
SELECT * FROM `user_operation_log` LIMIT 1, 1000000 SELECT id FROM `user_operation_log` LIMIT 1, 1000000 SELECT id, user_id, ip, op_data, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11, attr12 FROM `user_operation_log` LIMIT 1, 1000000
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 15676ms |
第二条 | 7298ms |
第三条 | 15960ms |
从结果可以看出减少不需要的列,查询效率也可以得到明显提升
第一条和第三条查询速度差不多,这时候你肯定会吐槽,那我还写那么多字段干啥呢,直接 * 不就完事了
注意本人的 MySQL 服务器和客户端是在_同一台机器_上,所以查询数据相差不多,有条件的同学可以测测客户端与MySQL分开
SELECT * 它不香吗?
在这里顺便补充一下为什么要禁止 SELECT *。难道简单无脑,它不香吗?
主要两点:
用 "SELECT * " 数据库需要解析更多的对象、字段、权限、属性等相关内容,在 SQL 语句复杂,硬解析较多的情况下,会对数据库造成沉重的负担。 增大网络开销,* 有时会误带上如log、IconMD5之类的无用且大文本字段,数据传输size会几何增长。特别是MySQL和应用程序不在同一台机器,这种开销非常明显。
结束
最后还是希望大家自己去实操一下,肯定还可以收获更多!
以上是面试官:千万级数据,怎么快速查询?的详细内容。更多信息请关注PHP中文网其他相关文章!

存储过程是MySQL中的预编译SQL语句集合,用于提高性能和简化复杂操作。1.提高性能:首次编译后,后续调用无需重新编译。2.提高安全性:通过权限控制限制数据表访问。3.简化复杂操作:将多条SQL语句组合,简化应用层逻辑。

MySQL查询缓存的工作原理是通过存储SELECT查询的结果,当相同查询再次执行时,直接返回缓存结果。1)查询缓存提高数据库读取性能,通过哈希值查找缓存结果。2)配置简单,在MySQL配置文件中设置query_cache_type和query_cache_size。3)使用SQL_NO_CACHE关键字可以禁用特定查询的缓存。4)在高频更新环境中,查询缓存可能导致性能瓶颈,需通过监控和调整参数优化使用。

MySQL被广泛应用于各种项目中的原因包括:1.高性能与可扩展性,支持多种存储引擎;2.易于使用和维护,配置简单且工具丰富;3.丰富的生态系统,吸引大量社区和第三方工具支持;4.跨平台支持,适用于多种操作系统。

MySQL数据库升级的步骤包括:1.备份数据库,2.停止当前MySQL服务,3.安装新版本MySQL,4.启动新版本MySQL服务,5.恢复数据库。升级过程需注意兼容性问题,并可使用高级工具如PerconaToolkit进行测试和优化。

MySQL备份策略包括逻辑备份、物理备份、增量备份、基于复制的备份和云备份。1.逻辑备份使用mysqldump导出数据库结构和数据,适合小型数据库和版本迁移。2.物理备份通过复制数据文件,速度快且全面,但需数据库一致性。3.增量备份利用二进制日志记录变化,适用于大型数据库。4.基于复制的备份通过从服务器备份,减少对生产系统的影响。5.云备份如AmazonRDS提供自动化解决方案,但成本和控制需考虑。选择策略时应考虑数据库大小、停机容忍度、恢复时间和恢复点目标。

MySQLclusteringenhancesdatabaserobustnessandscalabilitybydistributingdataacrossmultiplenodes.ItusestheNDBenginefordatareplicationandfaulttolerance,ensuringhighavailability.Setupinvolvesconfiguringmanagement,data,andSQLnodes,withcarefulmonitoringandpe

在MySQL中优化数据库模式设计可通过以下步骤提升性能:1.索引优化:在常用查询列上创建索引,平衡查询和插入更新的开销。2.表结构优化:通过规范化或反规范化减少数据冗余,提高访问效率。3.数据类型选择:使用合适的数据类型,如INT替代VARCHAR,减少存储空间。4.分区和分表:对于大数据量,使用分区和分表分散数据,提升查询和维护效率。

tooptimizemysqlperformance,lofterTheSeSteps:1)inasemproperIndexingTospeedUpqueries,2)使用ExplaintplaintoAnalyzeandoptimizequeryPerformance,3)ActiveServerConfigurationStersLikeTlikeTlikeTlikeIkeLikeIkeIkeLikeIkeLikeIkeLikeIkeLikeNodb_buffer_pool_sizizeandmax_connections,4)


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

记事本++7.3.1
好用且免费的代码编辑器

Dreamweaver Mac版
视觉化网页开发工具