先来看一个面试场景:
面试官:来说说,一千万的数据,你是怎么查询的? 小哥哥:直接分页查询,使用limit分页。 面试官:有实操过吗? 小哥哥:肯定有呀
也许有些朋友根本就没遇过上千万数据量的表,也不清楚查询上千万数据量的时候会发生什么。
今天就来带大家实操一下,这次是基于MySQL 5.7.26版本做测试
准备数据
没有一千万的数据怎么办?
创建呗
代码创建一千万?那是不可能的,太慢了,可能真的要跑一天。可以采用数据库脚本执行速度快很多。
创建表
CREATE TABLE `user_operation_log` ( `id` int(11) NOT NULL AUTO_INCREMENT, `user_id` varchar(64) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `ip` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `op_data` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr1` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr3` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr4` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr5` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr6` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr7` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr8` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr9` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr10` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr11` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, `attr12` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NULL DEFAULT NULL, PRIMARY KEY (`id`) USING BTREE ) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8mb4 COLLATE = utf8mb4_general_ci ROW_FORMAT = Dynamic;
创建数据脚本
采用批量插入,效率会快很多,而且每1000条数就commit,数据量太大,也会导致批量插入效率慢
DELIMITER ;; CREATE PROCEDURE batch_insert_log() BEGIN DECLARE i INT DEFAULT 1; DECLARE userId INT DEFAULT 10000000; set @execSql = 'INSERT INTO `test`.`user_operation_log`(`user_id`, `ip`, `op_data`, `attr1`, `attr2`, `attr3`, `attr4`, `attr5`, `attr6`, `attr7`, `attr8`, `attr9`, `attr10`, `attr11`, `attr12`) VALUES'; set @execData = ''; WHILE i<=10000000 DO set @attr = "'测试很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长很长的属性'"; set @execData = concat(@execData, "(", userId + i, ", '10.0.69.175', '用户登录操作'", ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ",", @attr, ")"); if i % 1000 = 0 then set @stmtSql = concat(@execSql, @execData,";"); prepare stmt from @stmtSql; execute stmt; DEALLOCATE prepare stmt; commit; set @execData = ""; else set @execData = concat(@execData, ","); end if; SET i=i+1; END WHILE; END;; DELIMITER ;
开始测试
田哥的电脑配置比较低:win10 标压渣渣i5 读写约500MB的SSD
由于配置低,本次测试只准备了3148000条数据,占用了磁盘5G(还没建索引的情况下),跑了38min,电脑配置好的同学,可以插入多点数据测试
SELECT count(1) FROM `user_operation_log`
返回结果:3148000
三次查询时间分别为:
14060 ms 13755 ms 13447 ms
普通分页查询
MySQL 支持 LIMIT 语句来选取指定的条数数据, Oracle 可以使用 ROWNUM 来选取。
MySQL分页查询语法如下:
SELECT * FROM table LIMIT [offset,] rows | rows OFFSET offset
第一个参数指定第一个返回记录行的偏移量 第二个参数指定返回记录行的最大数目
下面我们开始测试查询结果:
SELECT * FROM `user_operation_log` LIMIT 10000, 10
查询3次时间分别为:
59 ms 49 ms 50 ms
这样看起来速度还行,不过是本地数据库,速度自然快点。
换个角度来测试
相同偏移量,不同数据量
SELECT * FROM `user_operation_log` LIMIT 10000, 10 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 1000 SELECT * FROM `user_operation_log` LIMIT 10000, 10000 SELECT * FROM `user_operation_log` LIMIT 10000, 100000 SELECT * FROM `user_operation_log` LIMIT 10000, 1000000
查询时间如下:
数量 | 第一次 | 第二次 | 第三次 |
---|---|---|---|
10条 | 53ms | 52ms | 47ms |
100条 | 50ms | 60ms | 55ms |
1000条 | 61ms | 74ms | 60ms |
10000条 | 164ms | 180ms | 217ms |
100000条 | 1609ms | 1741ms | 1764ms |
1000000条 | 16219ms | 16889ms | 17081ms |
从上面结果可以得出结束:数据量越大,花费时间越长
相同数据量,不同偏移量
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT * FROM `user_operation_log` LIMIT 1000, 100 SELECT * FROM `user_operation_log` LIMIT 10000, 100 SELECT * FROM `user_operation_log` LIMIT 100000, 100 SELECT * FROM `user_operation_log` LIMIT 1000000, 100
偏移量 | 第一次 | 第二次 | 第三次 |
---|---|---|---|
100 | 36ms | 40ms | 36ms |
1000 | 31ms | 38ms | 32ms |
10000 | 53ms | 48ms | 51ms |
100000 | 622ms | 576ms | 627ms |
1000000 | 4891ms | 5076ms | 4856ms |
从上面结果可以得出结束:偏移量越大,花费时间越长
SELECT * FROM `user_operation_log` LIMIT 100, 100 SELECT id, attr FROM `user_operation_log` LIMIT 100, 100
如何优化
既然我们经过上面一番的折腾,也得出了结论,针对上面两个问题:偏移大、数据量大,我们分别着手优化
优化偏移量大问题
采用子查询方式
我们可以先定位偏移位置的 id,然后再查询数据
SELECT * FROM `user_operation_log` LIMIT 1000000, 10 SELECT id FROM `user_operation_log` LIMIT 1000000, 1 SELECT * FROM `user_operation_log` WHERE id >= (SELECT id FROM `user_operation_log` LIMIT 1000000, 1) LIMIT 10
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 4818ms |
第二条(无索引情况下) | 4329ms |
第二条(有索引情况下) | 199ms |
第三条(无索引情况下) | 4319ms |
第三条(有索引情况下) | 201ms |
从上面结果得出结论:
第一条花费的时间最大,第三条比第一条稍微好点 子查询使用索引速度更快
缺点:只适用于id递增的情况
id非递增的情况可以使用以下写法,但这种缺点是分页查询只能放在子查询里面
注意:某些 mysql 版本不支持在 in 子句中使用 limit,所以采用了多个嵌套select
SELECT * FROM `user_operation_log` WHERE id IN (SELECT t.id FROM (SELECT id FROM `user_operation_log` LIMIT 1000000, 10) AS t)
采用 id 限定方式
这种方法要求更高些,id必须是连续递增,而且还得计算id的范围,然后使用 between,sql如下
SELECT * FROM `user_operation_log` WHERE id between 1000000 AND 1000100 LIMIT 100 SELECT * FROM `user_operation_log` WHERE id >= 1000000 LIMIT 100
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 22ms |
第二条 | 21ms |
从结果可以看出这种方式非常快
注意:这里的 LIMIT 是限制了条数,没有采用偏移量
优化数据量大问题
返回结果的数据量也会直接影响速度
SELECT * FROM `user_operation_log` LIMIT 1, 1000000 SELECT id FROM `user_operation_log` LIMIT 1, 1000000 SELECT id, user_id, ip, op_data, attr1, attr2, attr3, attr4, attr5, attr6, attr7, attr8, attr9, attr10, attr11, attr12 FROM `user_operation_log` LIMIT 1, 1000000
查询结果如下:
sql | 花费时间 |
---|---|
第一条 | 15676ms |
第二条 | 7298ms |
第三条 | 15960ms |
从结果可以看出减少不需要的列,查询效率也可以得到明显提升
第一条和第三条查询速度差不多,这时候你肯定会吐槽,那我还写那么多字段干啥呢,直接 * 不就完事了
注意本人的 MySQL 服务器和客户端是在_同一台机器_上,所以查询数据相差不多,有条件的同学可以测测客户端与MySQL分开
SELECT * 它不香吗?
在这里顺便补充一下为什么要禁止 SELECT *。难道简单无脑,它不香吗?
主要两点:
用 "SELECT * " 数据库需要解析更多的对象、字段、权限、属性等相关内容,在 SQL 语句复杂,硬解析较多的情况下,会对数据库造成沉重的负担。 增大网络开销,* 有时会误带上如log、IconMD5之类的无用且大文本字段,数据传输size会几何增长。特别是MySQL和应用程序不在同一台机器,这种开销非常明显。
结束
最后还是希望大家自己去实操一下,肯定还可以收获更多!
以上是面试官:千万级数据,怎么快速查询?的详细内容。更多信息请关注PHP中文网其他相关文章!

MySQL是一种开源的关系型数据库管理系统,主要用于快速、可靠地存储和检索数据。其工作原理包括客户端请求、查询解析、执行查询和返回结果。使用示例包括创建表、插入和查询数据,以及高级功能如JOIN操作。常见错误涉及SQL语法、数据类型和权限问题,优化建议包括使用索引、优化查询和分表分区。

MySQL是一个开源的关系型数据库管理系统,适用于数据存储、管理、查询和安全。1.它支持多种操作系统,广泛应用于Web应用等领域。2.通过客户端-服务器架构和不同存储引擎,MySQL高效处理数据。3.基本用法包括创建数据库和表,插入、查询和更新数据。4.高级用法涉及复杂查询和存储过程。5.常见错误可通过EXPLAIN语句调试。6.性能优化包括合理使用索引和优化查询语句。

选择MySQL的原因是其性能、可靠性、易用性和社区支持。1.MySQL提供高效的数据存储和检索功能,支持多种数据类型和高级查询操作。2.采用客户端-服务器架构和多种存储引擎,支持事务和查询优化。3.易于使用,支持多种操作系统和编程语言。4.拥有强大的社区支持,提供丰富的资源和解决方案。

InnoDB的锁机制包括共享锁、排他锁、意向锁、记录锁、间隙锁和下一个键锁。1.共享锁允许事务读取数据而不阻止其他事务读取。2.排他锁阻止其他事务读取和修改数据。3.意向锁优化锁效率。4.记录锁锁定索引记录。5.间隙锁锁定索引记录间隙。6.下一个键锁是记录锁和间隙锁的组合,确保数据一致性。

MySQL查询性能不佳的原因主要包括没有使用索引、查询优化器选择错误的执行计划、表设计不合理、数据量过大和锁竞争。 1.没有索引导致查询缓慢,添加索引后可显着提升性能。 2.使用EXPLAIN命令可以分析查询计划,找出优化器错误。 3.重构表结构和优化JOIN条件可改善表设计问题。 4.数据量大时,采用分区和分表策略。 5.高并发环境下,优化事务和锁策略可减少锁竞争。

在数据库优化中,应根据查询需求选择索引策略:1.当查询涉及多个列且条件顺序固定时,使用复合索引;2.当查询涉及多个列但条件顺序不固定时,使用多个单列索引。复合索引适用于优化多列查询,单列索引则适合单列查询。

要优化MySQL慢查询,需使用slowquerylog和performance_schema:1.启用slowquerylog并设置阈值,记录慢查询;2.利用performance_schema分析查询执行细节,找出性能瓶颈并优化。

MySQL和SQL是开发者必备技能。1.MySQL是开源的关系型数据库管理系统,SQL是用于管理和操作数据库的标准语言。2.MySQL通过高效的数据存储和检索功能支持多种存储引擎,SQL通过简单语句完成复杂数据操作。3.使用示例包括基本查询和高级查询,如按条件过滤和排序。4.常见错误包括语法错误和性能问题,可通过检查SQL语句和使用EXPLAIN命令优化。5.性能优化技巧包括使用索引、避免全表扫描、优化JOIN操作和提升代码可读性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

记事本++7.3.1
好用且免费的代码编辑器

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器