使用Python-matplotlib绘制图表时,默认的颜色以及格式主题只能帮助我们熟悉绘图函数,而想要设计出优秀的可视化作品(无论是出版级别还是略带艺术气息) 都需要熟悉大量的绘图函数,如颜色、刻度、轴脊、字体等,当涉及绘制多子图时,这些操作都会耗费我们大量的精力,不经导致编写代码冗长,而且还易出错,具体可以查看下我之前的文章Python-matplotlib 学术散点图 EE 统计及绘制 和 Python-matplotlib 横向堆积柱状图绘制。除此之外,如果你每天都需要使用matplotlib绘图且经常需要对图表进行美化,那Proplot 绘图包就太适合你了,也不要担心会不适应,人家可是对matplotlib进行高度封装,极大简化绘图函数而已。下面我们就其安装和主要使用方法进行简单介绍,如果大家想要详细了解,可以去官网哦。
我们直接可是使用pip或者conda直接进行安装即可,
#for pip pip install proplot #for conda conda install -c conda-forge proplot
当然,由于版本的不断更新,你还可以使用如下代码进行更新处理:
#for pip pip install --upgrade proplot #for conda conda upgrade proplot
Proplot 绘制图表不需要像matplotlib那样对每一个绘图属性进行设置,其提供的format() 函提供一次更改所有设置的格式化方法。我们首先举个简单的例子,如下:
import matplotlib.pyplot as plt import matplotlib.ticker as mticker import matplotlib as mpl with mpl.rc_context(rc={'axes.linewidth': 1, 'axes.color': 'gray'}): fig, axs = plt.subplots(ncols=2, sharey=True) axs[0].set_ylabel('bar', color='gray') for ax in axs: ax.set_xlim(0, 100) ax.xaxis.set_major_locator(mticker.MultipleLocator(10)) ax.tick_params(width=1, color='gray', labelcolor='gray') ax.tick_params(axis='x', which='minor', bottom=True) ax.set_xlabel('foo', color='gray')
import proplot as plot fig, axs = plot.subplots(ncols=2) axs.format(linewidth=1, color='gray') axs.format(xlim=(0, 100), xticks=10, xtickminor=True, xlabel='foo', ylabel='bar')
从这简单的例子中就可以看出Proplot的简便性了。
除了上面 format() 大大缩减代码量,我们在介绍了我认为比较方便的绘图方法-多子图序号自动添加。具体的例子如下:
# 样本数据 import numpy as np state = np.random.RandomState(51423) data = 2 * (state.rand(100, 5) - 0.5).cumsum(axis=0) import proplot as plot fig, axs = plot.subplots(ncols=2) axs[0].plot(data, lw=2) axs[0].format(xticks=20, xtickminor=False) axs.format(abc=True,abcstyle='(A)',abcsize=12,abcloc='ul', suptitle='Abc label test', title='Title', xlabel='x axis', ylabel='y axis' ) plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\abc_01.png', dpi=900)
效果如下:
还可以对序号进行样式(abcstyle)、位置(abcloc)、大小(abcsize) 等的设置。其他详细设置可以参考官网。
import proplot as plot import numpy as np fig, axs = plot.subplots(nrows=2, share=0, axwidth='55mm', panelpad='1em') axs.format(suptitle='Stacked colorbars demo') state = np.random.RandomState(51423) N = 10 # Repeat for both axes for j, ax in enumerate(axs): ax.format( xlabel='data', xlocator=np.linspace(0, 0.8, 5), title=f'Subplot #{j+1}' ) for i, (x0, y0, x1, y1, cmap, scale) in enumerate(( (0, 0.5, 1, 1, 'grays', 0.5), (0, 0, 0.5, 0.5, 'reds', 1), (0.5, 0, 1, 0.5, 'blues', 2) )): if j == 1 and i == 0: continue data = state.rand(N, N) * scale x, y = np.linspace(x0, x1, N + 1), np.linspace(y0, y1, N + 1) m = ax.pcolormesh( x, y, data, cmap=cmap, levels=np.linspace(0, scale, 11) ) ax.colorbar(m, loc='l', label=f'dataset #{i+1}') plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\colorbar_legend_02.png', dpi=900)
效果如下:
import proplot as plot import numpy as np fig, axs = plot.subplots(ncols=3, nrows=3, axwidth=1.4) state = np.random.RandomState(51423) m = axs.pcolormesh( state.rand(20, 20), cmap='grays', levels=np.linspace(0, 1, 11), extend='both' )[0] axs.format( suptitle='Figure colorbars and legends demo', abc=True, abcloc='l', abcstyle='(a)', xlabel='xlabel', ylabel='ylabel' ) fig.colorbar(m, label='column 1', ticks=0.5, loc='b', col=1) fig.colorbar(m, label='columns 2-3', ticks=0.2, loc='b', cols=(2, 3)) fig.colorbar(m, label='stacked colorbar', ticks=0.1, loc='b', minorticks=0.05) fig.colorbar(m, label='colorbar with length <1', ticks=0.1, loc='r', length=0.7)
效果如下:
import proplot as plot import numpy as np plot.rc.update( linewidth=1.2, fontsize=10, ticklenratio=0.7, figurefacecolor='w', facecolor='pastel blue', titleloc='upper center', titleborder=False, ) fig, axs = plot.subplots(nrows=5, axwidth=6, aspect=(8, 1), share=0) axs[:4].format(xrotation=0) # no rotation for these examples # Default date locator # This is enabled if you plot datetime data or set datetime limits axs[0].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2001-01-02')), title='Auto date locator and formatter' ) # Concise date formatter introduced in matplotlib 3.1 axs[1].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2001-01-01')), xformatter='concise', title='Concise date formatter', ) # Minor ticks every year, major every 10 years axs[2].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2050-01-01')), xlocator=('year', 10), xformatter='\'%y', title='Ticks every N units', ) # Minor ticks every 10 minutes, major every 2 minutes axs[3].format( xlim=(np.datetime64('2000-01-01T00:00:00'), np.datetime64('2000-01-01T12:00:00')), xlocator=('hour', range(0, 24, 2)), xminorlocator=('minute', range(0, 60, 10)), xformatter='T%H:%M:%S', title='Ticks at specific intervals', ) # Month and year labels, with default tick label rotation axs[4].format( xlim=(np.datetime64('2000-01-01'), np.datetime64('2008-01-01')), xlocator='year', xminorlocator='month', # minor ticks every month xformatter='%b %Y', title='Ticks with default rotation', ) axs.format( ylocator='null', suptitle='Datetime locators and formatters demo' ) plot.rc.reset() plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\datetick.png', dpi=900)
效果如下:
以上是我认为ProPlot 比较优秀的几点,当然,大家也可以自行探索,发现自己喜欢的技巧。
我们使用之前的推文数据进行实例操作,详细代码如下:
#开始绘图 labels = ['L1', 'L2', 'L3', 'L4', 'L5'] data_a = [20, 34, 30, 35, 27] data_b = [25, 32, 34, 20, 25] data_c = [12, 20, 24, 17, 16] x = np.arange(len(labels)) width = .25 fig, axs = plot.subplots(ncols=2, nrows=1, sharey=1, width=10,height=4) #for mark, data in zip() axs[0].plot(x,y1, marker='s',c='k',lw=.5,label='D1',markersize=8) axs[0].plot(x,y2, marker='s',c='k',ls='--',lw=.5,markersize=8,markerfacecolor='white',markeredgewidth=.4,label='D2') axs[0].plot(x,y3,marker='^',c='k',lw=.5,markersize=8,markerfacecolor='dimgray',markeredgecolor='dimgray', label='D3') axs[0].plot(x,y4,marker='^',c='k',lw=.5,markersize=8,label='D4') axs[1].bar(x-width/2, data_a,width,label='category_A',color='#130074',ec='black',lw=.5) axs[1].bar(x+width/2, data_b, width,label='category_B',color='#CB181B',ec='black',lw=.5) axs[1].bar(x+width*3/2, data_c,width,label='category_C',color='#008B45',ec='black',lw=.5) #先对整体进行设置 axs.format(ylim=(0,40), xlabel='', ylabel='Values', abc=True, abcloc='ur', abcstyle='(A)',abcsize=13, suptitle='ProPlot Exercise' ) #再对每个子图进行设置 axs[0].format(ylim=(10,40),title='Multi-category scatter plot') axs[1].format(title='Multi-category bar plot',xticklabels=['L1', 'L2', 'L3', 'L4', 'L5']) plt.savefig(r'E:\Data_resourses\DataCharm 公众号\Python\学术图表绘制\ProPlot\test_01.png', dpi=900) plt.show()
效果如下:
只是简单的绘制,其他的设置也需要熟悉绘图函数,这里就给大家做个简单的演示。
本期推文我们介绍了matplotlib非常优秀的科学图表绘图库PrpPlot, 在一定程度上极大了缩减了定制化绘制时间,感兴趣的同学可以持续关注这个库,当然,还是最好在熟悉matplotlib基本绘图函数及图层属性设置函数的基础上啊。
以上是还在对Matplotlib繁琐的图层设置感到烦恼!?快来看看这个Python绘图工具包吧的详细内容。更多信息请关注PHP中文网其他相关文章!