Pandas — 数据处理
Pyecharts — 数据可视化
collections — 数据统计
可视化部分:
Line — 折线图 Bar — 柱状图 Calendar— 日历图 stylecloud — 词云图
进入正题~~
import jieba import stylecloud import pandas as pd from PIL import Image from collections import Counter from pyecharts.charts import Geo from pyecharts.charts import Bar from pyecharts.charts import Line from pyecharts.charts import Pie from pyecharts.charts import Calendar from pyecharts.charts import WordCloud from pyecharts import options as opts from pyecharts.commons.utils import JsCode from pyecharts.globals import ThemeType,SymbolType,ChartType
2.1 读取数据
df = pd.read_excel("医院药品销售数据.xlsx")
结果:

2.2 数据大小
df.shape
(6578, 7)
一共有6578条药品购买数据。
2.3 查看索引、数据类型和内存信息
df.info()
部分列存在数据缺失。
2.4 统计空值数据
df.isnull().sum()
2.5 输出空行
df[df.isnull().T.any()]

df1 = df.copy() df1 = df1.dropna(subset=['购药时间']) df1[df1.isnull().T.any()] df1['社保卡号'].fillna('0000', inplace=True) df1['社保卡号'] = df1['社保卡号'].astype(str) df1['商品编码'] = df1['商品编码'].astype(str) df1['销售数量'] = df1['销售数量'].astype(int)

2.6 销售数量,应收金额,实收金额三列的统计情况
df1[['销售数量','应收金额','实收金额']].describe()

df2 = df1.copy() df2['销售数量'] = df2['销售数量'].abs() df2['应收金额'] = df2['应收金额'].abs() df2['实收金额'] = df2['实收金额'].abs()

2.7 列拆分(购药时间列拆分为两列)
df3 = df2.copy() df3[['购药日期', '星期']] = df3['购药时间'].str.split(' ', 2, expand = True) df3 = df3[['购药日期', '星期','社保卡号','商品编码', '商品名称', '销售数量', '应收金额', '实收金额' ]]
代码:
color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0, [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#ed1941'}], false)""" g1 = df3.groupby('星期').sum() x_data = list(g1.index) y_data = g1['销售数量'].values.tolist() b1 = ( Bar() .add_xaxis(x_data) .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js))) .set_global_opts(title_opts=opts.TitleOpts(title='一周各天药品销量',pos_top='2%',pos_left = 'center'), legend_opts=opts.LegendOpts(is_show=False), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)), yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16))) ) b1.render_notebook()
每天销量整理相差不大,周五、周六偏于购药高峰。
代码:
color_js = """new echarts.graphic.LinearGradient(0, 1, 0, 0, [{offset: 0, color: '#FFFFFF'}, {offset: 1, color: '#08519c'}], false)""" g2 = df3.groupby('商品名称').sum().sort_values(by='销售数量', ascending=False) x_data = list(g2.index)[:10] y_data = g2['销售数量'].values.tolist()[:10] b2 = ( Bar() .add_xaxis(x_data) .add_yaxis('',y_data ,itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_js))) .set_global_opts(title_opts=opts.TitleOpts(title='药品销量前十',pos_top='2%',pos_left = 'center'), legend_opts=opts.LegendOpts(is_show=False), xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)), yaxis_opts=opts.AxisOpts(name="销量",name_location='middle',name_gap=50,name_textstyle_opts=opts.TextStyleOpts(font_size=16))) ) b2.render_notebook()

可以看出:苯磺 酸氨氯地平片(安内真)、开博通、酒石酸美托洛尔片(倍他乐克)等治疗高血压、心绞痛药物购买量比较多。。
3.6 药品名称词云
篇幅原因,部分代码未完全展示,如果需要可在下方获取,也可在线运行(含全部代码+数据文件):
https://www.heywhale.com/mw/project/61b83bd9c63c620017c629bc
以上是Pandas+Pyecharts | 医院药品销售数据可视化的详细内容。更多信息请关注PHP中文网其他相关文章!

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载
最流行的的开源编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境