搜索
首页后端开发Python教程20个Python使用小技巧,建议收藏!


1、易混淆操作

本节对一些 Python 易混淆的操作进行对比。

1.1 有放回随机采样和无放回随机采样

import random
random.choices(seq, k=1)  # 长度为k的list,有放回采样
random.sample(seq, k)     # 长度为k的list,无放回采样

1.2 lambda 函数的参数

func = lambda y: x + y          # x的值在函数运行时被绑定
func = lambda y, x=x: x + y     # x的值在函数定义时被绑定

1.3 copy 和 deepcopy

import copy
y = copy.copy(x)      # 只复制最顶层
y = copy.deepcopy(x)  # 复制所有嵌套部分

复制和变量别名结合在一起时,容易混淆:

a = [1, 2, [3, 4]]

# Alias.
b_alias = a  
assert b_alias == a and b_alias is a

# Shallow copy.
b_shallow_copy = a[:]  
assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2]

# Deep copy.
import copy
b_deep_copy = copy.deepcopy(a)  
assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]

对别名的修改会影响原变量,(浅)复制中的元素是原列表中元素的别名,而深层复制是递归的进行复制,对深层复制的修改不影响原变量。

2、常用工具

2.1 读写 CSV 文件

import csv
# 无header的读写
with open(name, 'rt', encoding='utf-8', newline='') as f:  # newline=''让Python不将换行统一处理
    for row in csv.reader(f):
        print(row[0], row[1])  # CSV读到的数据都是str类型
with open(name, mode='wt') as f:
    f_csv = csv.writer(f)
    f_csv.writerow(['symbol', 'change'])

# 有header的读写
with open(name, mode='rt', newline='') as f:
    for row in csv.DictReader(f):
        print(row['symbol'], row['change'])
with open(name, mode='wt') as f:
    header = ['symbol', 'change']
    f_csv = csv.DictWriter(f, header)
    f_csv.writeheader()
    f_csv.writerow({'symbol': xx, 'change': xx})

注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决

import sys
csv.field_size_limit(sys.maxsize)

csv 还可以读以 \t 分割的数据

f = csv.reader(f, delimiter='\t')

2.2 迭代器工具

itertools 中定义了很多迭代器工具,例如子序列工具:

import itertools
itertools.islice(iterable, start=None, stop, step=None)
# islice('ABCDEF', 2, None) -> C, D, E, F

itertools.filterfalse(predicate, iterable)         # 过滤掉predicate为False的元素
# filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6

itertools.takewhile(predicate, iterable)           # 当predicate为False时停止迭代
# takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4

itertools.dropwhile(predicate, iterable)           # 当predicate为False时开始迭代
# dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1

itertools.compress(iterable, selectors)            # 根据selectors每个元素是True或False进行选择
# compress(&#39;ABCDEF&#39;, [1, 0, 1, 0, 1, 1]) -> A, C, E, F

序列排序:

sorted(iterable, key=None, reverse=False)

itertools.groupby(iterable, key=None)              # 按值分组,iterable需要先被排序
# groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6)

itertools.permutations(iterable, r=None)           # 排列,返回值是Tuple
# permutations(&#39;ABCD&#39;, 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC

itertools.combinations(iterable, r=None)           # 组合,返回值是Tuple
itertools.combinations_with_replacement(...)
# combinations(&#39;ABCD&#39;, 2) -> AB, AC, AD, BC, BD, CD

多个序列合并:

itertools.chain(*iterables)                        # 多个序列直接拼接
# chain(&#39;ABC&#39;, &#39;DEF&#39;) -> A, B, C, D, E, F

import heapq
heapq.merge(*iterables, key=None, reverse=False)   # 多个序列按顺序拼接
# merge(&#39;ABF&#39;, &#39;CDE&#39;) -> A, B, C, D, E, F

zip(*iterables)                                    # 当最短的序列耗尽时停止,结果只能被消耗一次
itertools.zip_longest(*iterables, fillvalue=None)  # 当最长的序列耗尽时停止,结果只能被消耗一次

2.3 计数器

计数器可以统计一个可迭代对象中每个元素出现的次数。

import collections
# 创建
collections.Counter(iterable)

# 频次
collections.Counter[key]                 # key出现频次
# 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素
collections.Counter.most_common(n=None)

# 插入/更新
collections.Counter.update(iterable)
counter1 + counter2; counter1 - counter2  # counter加减

# 检查两个字符串的组成元素是否相同
collections.Counter(list1) == collections.Counter(list2)

2.4 带默认值的 Dict

当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。

import collections
collections.defaultdict(type)  # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值

2.5 有序 Dict

import collections
collections.OrderedDict(items=None)  # 迭代时保留原始插入顺序

3、高性能编程和调试

3.1 输出错误和警告信息

向标准错误输出信息

import sys
sys.stderr.write(&#39;&#39;)

输出警告信息

import warnings
warnings.warn(message, category=UserWarning)  
# category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning

控制警告消息的输出

$ python -W all     # 输出所有警告,等同于设置warnings.simplefilter(&#39;always&#39;)
$ python -W ignore  # 忽略所有警告,等同于设置warnings.simplefilter(&#39;ignore&#39;)
$ python -W error   # 将所有警告转换为异常,等同于设置warnings.simplefilter(&#39;error&#39;)

3.2 代码中测试

有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:

# 在代码中的debug部分
if __debug__:
    pass

一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:

$ python -0 main.py

3.3 代码风格检查

使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误

pylint main.py

3.4 代码耗时

耗时测试

$ python -m cProfile main.py

测试某代码块耗时

# 代码块耗时定义
from contextlib import contextmanager
from time import perf_counter

@contextmanager
def timeblock(label):
    tic = perf_counter()
    try:
        yield
    finally:
        toc = perf_counter()
        print(&#39;%s : %s&#39; % (label, toc - tic))

# 代码块耗时测试
with timeblock(&#39;counting&#39;):
    pass

代码耗时优化的一些原则

  • 专注于优化产生性能瓶颈的地方,而不是全部代码。
  • 避免使用全局变量。局部变量的查找比全局变量更快,将全局变量的代码定义在函数中运行通常会快 15%-30%。
  • 避免使用.访问属性。使用 from module import name 会更快,将频繁访问的类的成员变量 self.member 放入到一个局部变量中。
  • 尽量使用内置数据结构。str, list, set, dict 等使用 C 实现,运行起来很快。
  • 避免创建没有必要的中间变量,和 copy.deepcopy()。
  • 字符串拼接,例如 a + ':' + b + ':' + c 会创造大量无用的中间变量,':',join([a, b, c]) 效率会高不少。另外需要考虑字符串拼接是否必要,例如 print(':'.join([a, b, c])) 效率比 print(a, b, c, sep=':') 低。

以上是20个Python使用小技巧,建议收藏!的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:Python当打之年。如有侵权,请联系admin@php.cn删除
Python的主要目的:灵活性和易用性Python的主要目的:灵活性和易用性Apr 17, 2025 am 12:14 AM

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python:多功能编程的力量Python:多功能编程的力量Apr 17, 2025 am 12:09 AM

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

每天2小时学习Python:实用指南每天2小时学习Python:实用指南Apr 17, 2025 am 12:05 AM

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。

Python与C:开发人员的利弊Python与C:开发人员的利弊Apr 17, 2025 am 12:04 AM

Python适合快速开发和数据处理,而C 适合高性能和底层控制。1)Python易用,语法简洁,适用于数据科学和Web开发。2)C 性能高,控制精确,常用于游戏和系统编程。

Python:时间投入和学习步伐Python:时间投入和学习步伐Apr 17, 2025 am 12:03 AM

学习Python所需时间因人而异,主要受之前的编程经验、学习动机、学习资源和方法及学习节奏的影响。设定现实的学习目标并通过实践项目学习效果最佳。

Python:自动化,脚本和任务管理Python:自动化,脚本和任务管理Apr 16, 2025 am 12:14 AM

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

Python和时间:充分利用您的学习时间Python和时间:充分利用您的学习时间Apr 14, 2025 am 12:02 AM

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python:游戏,Guis等Python:游戏,Guis等Apr 13, 2025 am 12:14 AM

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它们
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器