搜索
首页后端开发Python教程Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像


本期利用 python 分析一份 电子产品销售数据,看看:

  • 每月订单数量订单额

  • 每天订单数量分布

  • 男女用户订单比例

  • 女性/男性购买商品TOP20

  • 各年龄段订单数量订单额

  • 用户RFM等级画像

  • 等等...

希望对大家有所帮助,如有疑问或者需要改进的地方可以联系小编。

涉及到的库:
Pandas — 数据处理
Pyecharts — 数据可视化

1. 导入模块

import pandas as pd
from pyecharts.charts import Line
from pyecharts.charts import Bar
from pyecharts.charts import Pie
from pyecharts.charts import Grid
from pyecharts.charts import PictorialBar
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode
import warnings
warnings.filterwarnings('ignore')
2. Pandas数据处理

2.1 读取数据 

df = pd.read_csv("电子产品销售分析.csv")
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

2.2 数据信息 

df.info()

Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

一共有564169条数据,其中category_code、brand两列有部分数据缺失。

2.3 去掉部分用不到的列

df1 = df[['event_time', 'order_id', 'category_code', 'brand', 'price', 'user_id', 'age', 'sex', 'local']]
df1.shape

(564169, 9)

2.4 去除重复数据

df1 = df1.drop_duplicates()
df1.shape
(556456, 9)

2.5 增加部分时间列

df1['event_time'] = pd.to_datetime(df1['event_time'].str[:19],format="%Y-%m-%d %H:%M:%S")
df1['Year'] = df1['event_time'].dt.year
df1['Month'] = df1['event_time'].dt.month
df1['Day'] = df1['event_time'].dt.day
df1['hour'] = df1['event_time'].dt.hour
df1.head(10)
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

2.6 过滤数据,也可以选择均值填充

df1 = df1.dropna(subset=['category_code'])
df1 = df1[(df1["Year"] == 2020)&(df1["price"] > 0)]
df1.shape
(429261, 13)
2.7 对年龄分组
df1['age_group'] = pd.cut(df1['age'],[10,20,30,40,50],labels=['10-20','20-30','30-40','40-50'])
2.8 增加商品一、二级分类
df1["category_code_1"] = df1["category_code"].apply(lambda x: x.split(".")[0] if "." in x else x)
df1["category_code_2"] = df1["category_code"].apply(lambda x: x.split(".")[-1] if "." in x else x)
df1.head(10)
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像
数据处理后还有87678个用户429261条数据。


3. Pyecharts数据可视化

3.1 每月订单数量订单额
def get_bar1():
    bar1 = (
        Bar()
            .add_xaxis(x_data)
            .add_yaxis("订单数量", y_data1)
            .extend_axis(yaxis=opts.AxisOpts(axislabel_opts=opts.LabelOpts(formatter="{value}万")))
            .set_global_opts(
            legend_opts=opts.LegendOpts(pos_top='25%', pos_left='center'),
            title_opts=opts.TitleOpts(
                title='1-每月订单数量订单额',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='7%',
                pos_left="center"
            )
        )
    )
    line = (
        Line()
            .add_xaxis(x_data)
            .add_yaxis("订单额", y_data2, yaxis_index=1)
    )
    bar1.overlap(line)
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像
  • 下半年的订单量和订单额相对于上半年明显增多
  • 8月份的订单量和订单额达到峰值。

3.2 一月各天订单数量分布
def get_bar2():
    pie1 = (
        Pie()
            .add(
            "",
            datas,
            radius=["13%", "25%"],
            label_opts=opts.LabelOpts(formatter="{b}: {d}%"),
        )
    )
    bar1 = (
        Bar(init_opts=opts.InitOpts(theme='dark', width='1000px', height='600px', bg_color='#0d0735'))
            .add_xaxis(x_data)
            .add_yaxis("", y_data, itemstyle_opts=opts.ItemStyleOpts(color=JsCode(color_function)))
            .set_global_opts(
            legend_opts=opts.LegendOpts(is_show=False),
            title_opts=opts.TitleOpts(
                title='2-一月各天订单数量分布',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='7%',
                pos_left="center"
            )
        )
    )
    bar1.overlap(pie1)
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像
  • 从每天的订单量上看,上中下旬订单量基本持平,占比都在30%以上,上旬和中旬要稍微高一点
3.3 一天各时段订单数量分布
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像
  • 从订单时段上看,上午的订单要明显高于下午,占比达到了70.26%,尤其是在早上7:00-11:00之间
3.4 男女用户订单比例

Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

  • 男性订单数量占比49.55%,女性订单数量占比50.45%,基本持平

3.5 女性/男性购买商品TOP20

def get_bar3():
    bar1 = (
        Bar()
        .add_xaxis(x_data1)
        .add_yaxis('女性', y_data1,
                   label_opts=opts.LabelOpts(position='right')
                   )
        .set_global_opts(
            title_opts=opts.TitleOpts(
                title='5-女性/男性购买商品TOP20',
                subtitle='-- 制图@公众号:Python当打之年 --',
                pos_top='3%',
                pos_left="center"),
            legend_opts=opts.LegendOpts(pos_left='20%', pos_top='10%')
        )
        .reversal_axis()
    )
    bar2 = (
        Bar()
        .add_xaxis(x_data2)
        .add_yaxis('男性', y_data2,
                   label_opts=opts.LabelOpts(position='right')
                   )
        .set_global_opts(
            legend_opts=opts.LegendOpts(pos_right='25%', pos_top='10%')
        )
        .reversal_axis()
    )
    grid1 = (
        Grid()
        .add(bar1, grid_opts=opts.GridOpts(pos_left='12%', pos_right='50%', pos_top='15%'))
        .add(bar2, grid_opts=opts.GridOpts(pos_left='60%', pos_right='5%', pos_top='15%'))
    )
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像
  • 男性女性购买商品TOP20基本一致:smartphone、notebook、refrigerators、headphone等四类商品购买量比较大。
3.6 各年龄段订单数量订单额

Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

  • 在10-50年龄段内,随着年龄段的增加,订单量和订单金额也在逐步增大。
  • 细分的话,20-30和40-50这两个年龄段稍高一些。

3.7 各年龄段购买商品TOP10

Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

3.8 用户RFM等级画像

RFM模型是衡量客户价值和客户创利能力的重要工具和手段。该模型通过一个客户的近期购买行为(R)、购买的总体频率(F)以及花了多少钱(M)三项指标来描述该客户的价值状况,从而能够更加准确地将成本和精力更精确的花在用户层次身上,实现针对性的营销。

用户分类:

def rfm_func(x):
    level = x.apply(lambda x:"1" if x > 0 else '0')
    RMF = level.R + level.F + level.M
    dic_rfm ={
        '111':'重要价值客户',
        '011':'重要保持客户',
        '101':'重要发展客户',
        '001':'重要挽留客户',
        '110':'一般价值客户',
        '100':'一般发展客户',
        '010':'一般保持客户',
        '000':'一般挽留客户'
    }
    result = dic_rfm[RMF]
    return result

 计算等级:

df_rfm = df1.copy()
df_rfm = df_rfm[['user_id','event_time','price']]
# 时间以当年年底为准
df_rfm['days'] = (pd.to_datetime("2020-12-31")-df_rfm["event_time"]).dt.days
# 计算等级
df_rfm = pd.pivot_table(df_rfm,index="user_id",
                     values=["user_id","days","price"],
                     aggfunc={"user_id":"count","days":"min","price":"sum"})
df_rfm = df_rfm[["days","user_id","price"]]
df_rfm.columns = ["R","F","M"]
df_rfm['RMF'] = df_rfm[['R','F','M']].apply(lambda x:x-x.mean()).apply(rfm_func,axis=1)
df_rfm.head()
Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

用户画像:

Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像

根据RFM模型可将用户分为以下8类:

  • 重要价值客户:最近消费时间近、消费频次和消费金额都很高。
  • 重要保持客户:最近消费时间较远,消费金额和频次都很高。

  • 重要发展客户:最近消费时间较近、消费金额高,但频次不高、忠诚度不高,很有潜力的用户,必须重点发展。

  • 重要挽留客户:最近消费时间较远、消费频次不高,但消费金额高的用户,可能是将要流失或者己经要流失的用户,应当给予挽留措施。

  • 一般价值客户:最近消费时间近,频率高但消费金额低.需要提高其客单价。

  • 一般发展客户:最近消费时间较近,消费金额、频次都不高。

  • 一般保持客户:最近消费时间较远,消费频次高,消费金额不高。

  • 一般挽留客户:各项指数都不高,可以适当放弃。

以上是Pandas+Pyecharts | 电子产品销售数据分析可视化+用户RFM画像的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:Python当打之年。如有侵权,请联系admin@php.cn删除
python pandas安装方法python pandas安装方法Nov 22, 2023 pm 02:33 PM

python可以通过使用pip、使用conda、从源代码、使用IDE集成的包管理工具来安装pandas。详细介绍:1、使用pip,在终端或命令提示符中运行pip install pandas命令即可安装pandas;2、使用conda,在终端或命令提示符中运行conda install pandas命令即可安装pandas;3、从源代码安装等等。

日常工作中,Python+Pandas是否能代替Excel+VBA?日常工作中,Python+Pandas是否能代替Excel+VBA?May 04, 2023 am 11:37 AM

知乎上有个热门提问,日常工作中Python+Pandas是否能代替Excel+VBA?我的建议是,两者是互补关系,不存在谁替代谁。复杂数据分析挖掘用Python+Pandas,日常简单数据处理用Excel+VBA。从数据处理分析能力来看,Python+Pandas肯定是能取代Excel+VBA的,而且要远远比后者强大。但从便利性、传播性、市场认可度来看,Excel+VBA在职场工作上还是无法取代的。因为Excel符合绝大多数人的使用习惯,使用成本更低。就像Photoshop能修出更专业的照片,为

如何使用Python中的Pandas按特定列合并两个CSV文件?如何使用Python中的Pandas按特定列合并两个CSV文件?Sep 08, 2023 pm 02:01 PM

CSV(逗号分隔值)文件广泛用于以简单格式存储和交换数据。在许多数据处理任务中,需要基于特定列合并两个或多个CSV文件。幸运的是,这可以使用Python中的Pandas库轻松实现。在本文中,我们将学习如何使用Python中的Pandas按特定列合并两个CSV文件。什么是Pandas库?Pandas是一个用于Python信息控制和检查的开源库。它提供了用于处理结构化数据(例如表格、时间序列和多维数据)以及高性能数据结构的工具。Pandas广泛应用于金融、数据科学、机器学习和其他需要数据操作的领域。

时间序列特征提取的Python和Pandas代码示例时间序列特征提取的Python和Pandas代码示例Apr 12, 2023 pm 05:43 PM

使用Pandas和Python从时间序列数据中提取有意义的特征,包括移动平均,自相关和傅里叶变换。前言时间序列分析是理解和预测各个行业(如金融、经济、医疗保健等)趋势的强大工具。特征提取是这一过程中的关键步骤,它涉及将原始数据转换为有意义的特征,可用于训练模型进行预测和分析。在本文中,我们将探索使用Python和Pandas的时间序列特征提取技术。在深入研究特征提取之前,让我们简要回顾一下时间序列数据。时间序列数据是按时间顺序索引的数据点序列。时间序列数据的例子包括股票价格、温度测量和交通数据。

pandas写入excel有哪些方法pandas写入excel有哪些方法Nov 22, 2023 am 11:46 AM

pandas写入excel的方法有:1、安装所需的库;2、读取数据集;3、写入Excel文件;4、指定工作表名称;5、格式化输出;6、自定义样式。Pandas是一个流行的Python数据分析库,提供了许多强大的数据清洗和分析功能,要将Pandas数据写入Excel文件,可以使用Pandas提供的“to_excel()”方法。

pandas如何读取txt文件pandas如何读取txt文件Nov 21, 2023 pm 03:54 PM

pandas读取txt文件的步骤:1、安装Pandas库;2、使用“read_csv”函数读取txt文件,并指定文件路径和文件分隔符;3、Pandas将数据读取为一个名为DataFrame的对象;4、如果第一行包含列名,则可以通过将header参数设置为0来指定,如果没有,则设置为None;5、如果txt文件中包含缺失值或空值,可以使用“na_values”指定这些缺失值。

pandas怎么读取csv文件pandas怎么读取csv文件Dec 01, 2023 pm 04:18 PM

读取CSV文件的方法有使用read_csv()函数、指定分隔符、指定列名、跳过行、缺失值处理、自定义数据类型等。详细介绍:1、read_csv()函数是Pandas中最常用的读取CSV文件的方法。它可以从本地文件系统或远程URL加载CSV数据,并返回一个DataFrame对象;2、指定分隔符,默认情况下,read_csv()函数将使用逗号作为CSV文件的分隔符等等。

Pandas 与 PySpark 强强联手,功能与速度齐飞!Pandas 与 PySpark 强强联手,功能与速度齐飞!May 01, 2023 pm 09:19 PM

​使用Python做数据处理的数据科学家或数据从业者,对数据科学包pandas并不陌生,也不乏像云朵君一样的pandas重度使用者,项目开始写的第一行代码,大多是importpandasaspd。pandas做数据处理可以说是yyds!而他的缺点也是非常明显,pandas只能单机处理,它不能随数据量线性伸缩。例如,如果pandas试图读取的数据集大于一台机器的可用内存,则会因内存不足而失败。另外​pandas在处理大型​数据方面非常慢,虽然有像Dask或Vaex等其他库来优化提升数

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!