搜索
首页后端开发Python教程使用Scrapy框架爬取Flickr图片库

在如今的信息技术时代,海量数据的爬取成为了一项重要的技能。而随着大数据技术的快速发展,数据爬取技术也不断得到更新和改进。其中,Scrapy框架无疑是最为常用和流行的一种框架,其在数据爬取和处理上有着独特的优势和灵活性。

本文将介绍如何使用Scrapy框架爬取Flickr图片库。Flickr是一个图片分享网站,其库存有数亿张图片,具备非常大量的数据资源。通过Scrapy框架的使用,我们可以轻松地获取到这些数据资源,进行研究分析或者利用其搭建应用模型,从而更好的发挥大数据的威力。

一、Scrapy框架介绍

Scrapy是一个基于Python语言的开源网络爬虫框架。它以“有效率”和“可维护性”作为设计理念,实现了一个全面的爬虫框架,比较适合大规模数据的爬取和处理。Scrapy框架的核心部分包括了如下主要的功能模块:

  • 引擎(Engine):负责处理整个系统的数据流,控制各个组件之间的交互和数据传递。
  • 调度器(Scheduler):负责将引擎发出的请求(Request)排序,并交给下载器(Downloader)。
  • 下载器(Downloader):负责下载网页内容,将网页返回的内容经过处理之后再交给引擎。
  • 解析器(Spider):负责解析下载器下载的网页,将想要的数据从中提取出来并组织成结构化的数据。
  • 管道(Pipeline):负责将处理完的数据进行后续处理工作,如保存到数据库或文件中等。

二、获取Flickr API Key

在进行数据爬取之前,我们需要先申请Flickr API Key来获取访问Flickr数据库的权限。在Flickr开发者网站(https://www.flickr.com/services/api/misc.api_keys.html)中,我们可以通过注册来获得一个API KEY。具体的申请步骤如下:

①首先,我们需要进入 https://www.flickr.com/services/apps/create/apply/ 网址来申请API KEY。

②在进入该网址后,我们需要进行登陆操作,如果没有账号则需要自行注册一个。

③登陆之后,需要填写并提交Flickr的申请表格。在表格中,主要需要填写两个方面的信息:

  • 一个小应用的名称
  • 一个“非商业”目的的描述

④申请表格填写完毕之后,系统会生成一个API KEY和一个SECRET。我们需要将这两个信息进行保存,便于后序的使用。

三、Scrapy框架爬取Flickr图片库的实现

接下来,我们将介绍如何使用Scrapy框架来实现Flickr图片库数据爬取的操作。

1.编写Scrapy爬虫

首先,我们需要新建一个Scrapy项目,并在项目中创建一个爬虫文件。在爬虫文件中,我们需要设置好Flickr API数据库的基本信息,以及数据的存储位置:

import time
import json
import scrapy
from flickr.items import FlickrItem

class FlickrSpider(scrapy.Spider):
    name = 'flickr'
    api_key = 'YOUR_API_KEY'  # 这里填写你自己的API Key
    tags = 'cat,dog'  # 这里将cat和dog作为爬取的关键词,你可以自由定义
    format = 'json'
    nojsoncallback = '1'
    page = '1'
    per_page = '50'

    start_urls = [
        'https://api.flickr.com/services/rest/?method=flickr.photos.search&'
        'api_key={}'
        '&tags={}'
        '&page={}'
        '&per_page={}'
        '&format={}'
        '&nojsoncallback={}'.format(api_key, tags, page, per_page, format, nojsoncallback)
    ]

    def parse(self, response):
        results = json.loads(response.body_as_unicode())
        for photo in results['photos']['photo']:
            item = FlickrItem()
            item['image_title'] = photo['title']
            item['image_url'] = 'https://farm{}.staticflickr.com/{}/{}_{}.jpg'.format(
                photo['farm'], photo['server'], photo['id'], photo['secret'])
            yield item

        if int(self.page) <= results['photos']['pages']:
            self.page = str(int(self.page) + 1)
            next_page_url = 'https://api.flickr.com/services/rest/?method=flickr.photos.search&' 
                            'api_key={}' 
                            '&tags={}' 
                            '&page={}' 
                            '&per_page={}' 
                            '&format={}' 
                            '&nojsoncallback={}'.format(self.api_key, self.tags, self.page, self.per_page, self.format, self.nojsoncallback)
            time.sleep(1)  # 设置延时1秒钟
            yield scrapy.Request(url=next_page_url, callback=self.parse)

在爬虫文件中,我们设置了Flickr图片库的关键词“cat”和“dog”,然后设定了翻页的参数,并将格式设置为json。我们在parse函数中进行了每个图片的信息提取和处理,并使用yield返回。

接下来,我们需要定义数据的存储位置和格式,在settings.py中进行一下设置:

ITEM_PIPELINES = {
   'flickr.pipelines.FlickrPipeline': 300,
}

IMAGES_STORE = 'images'

2.编写Item Pipeline

接下来,我们需要编写一个Item Pipeline,将收集到的图片数据进行处理和存储:

import scrapy
from scrapy.pipelines.images import ImagesPipeline
from scrapy.exceptions import DropItem

class FlickrPipeline(object):
    def process_item(self, item, spider):
        return item

class FlickrImagesPipeline(ImagesPipeline):
    def get_media_requests(self, item, info):
        for image_url in item['image_url']:
            try:
                yield scrapy.Request(image_url)
            except Exception as e:
                pass

    def item_completed(self, results, item, info):
        image_paths = [x['path'] for ok, x in results if ok]
        if not image_paths:
            raise DropItem("Item contains no images")
        item['image_paths'] = image_paths
        return item

3.运行程序

当我们完成以上的代码编写之后,就可以运行Scrapy框架来实现数据爬取的操作了。我们需要在命令行中输入以下指令:

scrapy crawl flickr

程序开始运行之后,爬虫将会爬取Flickr数据库中有关“cat”和“dog”的图片,并将图片保存在指定的存储位置中。

四、总结

通过本文的介绍,我们详细了解了如何使用Scrapy框架来爬取Flickr图片库的操作。在实际的应用中,我们可以根据自己的需求来修改关键词、一页的数量或者图片存储的路径等内容。无论从哪方面来讲,Scrapy框架作为一个成熟的、功能丰富的爬虫框架,其不断更新的功能和灵活的可扩展性,都为我们的数据爬取工作提供了强有力的支持。

以上是使用Scrapy框架爬取Flickr图片库的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!