搜索
首页后端开发Python教程Python中的梯度下降算法详解

Python中的梯度下降算法详解

Jun 10, 2023 pm 02:30 PM
梯度下降python编程算法详解

梯度下降(Gradient descent)是一种常用的优化算法,在机器学习中被广泛应用。Python是一门很好的数据科学编程语言,也有很多现成的库可以实现梯度下降算法。本文将详细介绍Python中的梯度下降算法,包括概念和实现。

一、梯度下降的定义
梯度下降是一种迭代算法,用于优化函数的参数。在机器学习中,我们通常使用梯度下降来最小化损失函数。因此,梯度下降可以被认为是一种最小化函数的方法。梯度下降算法可以用于任何可以计算梯度的系统,包括线性回归、逻辑回归、神经网络等等。

二、梯度下降的原理
梯度下降算法的基本原理是找到一个函数的最小值。我们通常将函数的最小值看作是函数的参数(参数是指我们需要优化的变量)的函数中的最小值,因此,我们需要计算参数函数的导数。我们用导数来判断函数当前的斜率,并将其与学习率相乘来确定我们的下一步应该往哪个方向前进。当函数的导数为零时,我们就找到了函数的最小值。在实际应用中,我们不需要保证能找到函数的全局最小值,只需要找到其局部最小值即可。

三、梯度下降算法的步骤
1.初始化参数。我们需要将优化函数所需的参数设置为一个初始值,例如,将参数设置为零或随机数。
2.计算损失函数。使用给定的参数计算一个损失函数。
3.计算梯度。计算损失函数的梯度。梯度表明了函数在当前参数下的斜率。
4.更新参数。根据梯度更新参数。更新后的参数将使损失函数更接近于最优解。
5.重复步骤2至4,直到满足停止条件。停止条件可以是达到一定的迭代次数,或是达到一定的优化水平。

四、Python实现梯度下降(批量梯度下降)
接下来,我们将介绍如何在Python中实现批量梯度下降算法,批量梯度下降算法是梯度下降算法的一种形式,并假定我们有足够的内存来一次性处理所有的训练样本。

数据准备
我们使用sklearn的datasets内置数据集IRIS,来作为我们实现批量梯度下降的样本数据。以下是我们需要用到的Python包和导入数据集的代码:

from sklearn.datasets import load_iris
import numpy as np

iris = load_iris()
X = iris.data
y = iris.target

数据预处理
在进行批量梯度下降之前,我们需要对我们的数据进行规范化。这可以通过计算每个特征的均值和标准差来完成。

mean = np.mean(X,axis=0)
std = np.std(X,axis=0)
X = (X - mean)/std

定义损失函数
我们将使用平方误差函数作为模型的损失函数。我们的损失函数为:

def loss_function(X,y,theta):
    m = len(y)
    predictions = np.dot(X,theta)
    cost = (1/(2*m)) * np.sum((predictions-y)**2)
    return cost

定义训练函数
接下来我们定义函数来实现批量梯度下降算法。

def gradient_descent(X,y,theta,learning_rate,num_iterations):
    m = len(y)
    cost_history = np.zeros(num_iterations)
    theta_history = np.zeros((num_iterations,theta.shape[0]))
    for i in range(num_iterations):
        prediction = np.dot(X,theta)
        theta = theta - (1/m)*learning_rate*(X.T.dot((prediction - y)))
        theta_history[i,:] = theta.T
        cost_history[i]  = loss_function(X,y,theta)
        
    return theta, cost_history, theta_history

运行训练函数
我们现在运行模型训练函数,并输出最终模型的代价值和参数值,然后将训练数据拟合到模型中。

theta = np.zeros(X.shape[1])
learning_rate = 0.1
num_iterations = 1000
theta,cost_history,theta_history = gradient_descent(X,y,theta,learning_rate,num_iterations)

print('Theta: ',theta)
print('Final cost/MSE: ',cost_history[-1])

五、总结
在本文中,我们讲解了Python中的梯度下降算法,包括概念和实现。我们首先介绍了梯度下降算法的定义和原理,然后详细描述了梯度下降算法的步骤。最后,我们实现了批量梯度下降并运行样本数据集,获得了训练后的模型和其代价。

梯度下降算法是机器学习中的必备知识点,而Python又是数据科学中使用最广泛的编程语言之一,因此学习Python中的梯度下降算法是非常重要的。希望这篇文章对您学习Python梯度下降算法有所帮助。

以上是Python中的梯度下降算法详解的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
如何使用numpy创建多维数组?如何使用numpy创建多维数组?Apr 29, 2025 am 12:27 AM

使用NumPy创建多维数组可以通过以下步骤实现:1)使用numpy.array()函数创建数组,例如np.array([[1,2,3],[4,5,6]])创建2D数组;2)使用np.zeros(),np.ones(),np.random.random()等函数创建特定值填充的数组;3)理解数组的shape和size属性,确保子数组长度一致,避免错误;4)使用np.reshape()函数改变数组形状;5)注意内存使用,确保代码清晰高效。

说明Numpy阵列中'广播”的概念。说明Numpy阵列中'广播”的概念。Apr 29, 2025 am 12:23 AM

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增强可读性,和Boostsperformance.Shere'shore'showitworks:1)较小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

说明如何在列表,Array.Array和用于数据存储的Numpy数组之间进行选择。说明如何在列表,Array.Array和用于数据存储的Numpy数组之间进行选择。Apr 29, 2025 am 12:20 AM

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro

举一个场景的示例,其中使用Python列表比使用数组更合适。举一个场景的示例,其中使用Python列表比使用数组更合适。Apr 29, 2025 am 12:17 AM

Pythonlistsarebetterthanarraysformanagingdiversedatatypes.1)Listscanholdelementsofdifferenttypes,2)theyaredynamic,allowingeasyadditionsandremovals,3)theyofferintuitiveoperationslikeslicing,but4)theyarelessmemory-efficientandslowerforlargedatasets.

您如何在Python数组中访问元素?您如何在Python数组中访问元素?Apr 29, 2025 am 12:11 AM

toAccesselementsInapyThonArray,useIndIndexing:my_array [2] accessEsthethEthErlement,returning.3.pythonosezero opitedEndexing.1)usepositiveandnegativeIndexing:my_list [0] fortefirstElment,fortefirstelement,my_list,my_list [-1] fornelast.2] forselast.2)

Python中有可能理解吗?如果是,为什么以及如果不是为什么?Python中有可能理解吗?如果是,为什么以及如果不是为什么?Apr 28, 2025 pm 04:34 PM

文章讨论了由于语法歧义而导致的Python中元组理解的不可能。建议使用tuple()与发电机表达式使用tuple()有效地创建元组。(159个字符)

Python中的模块和包装是什么?Python中的模块和包装是什么?Apr 28, 2025 pm 04:33 PM

本文解释了Python中的模块和包装,它们的差异和用法。模块是单个文件,而软件包是带有__init__.py文件的目录,在层次上组织相关模块。

Python中的Docstring是什么?Python中的Docstring是什么?Apr 28, 2025 pm 04:30 PM

文章讨论了Python中的Docstrings,其用法和收益。主要问题:Docstrings对于代码文档和可访问性的重要性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具