首页 >科技周边 >人工智能 >识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

王林
王林转载
2023-06-03 20:49:071216浏览

随着生成式大模型的不断进步,它们生成的语料正逐步逼近人类。虽然大模型正在解放无数文书的双手,它以假乱真的强劲能力也为一些不法分子所利用,造成了一系列社会问题:

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了


识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

来自北大、华为的研究者们提出了一种识别各式 AI 生成语料的可靠文本检测器。根据长短文本的不同特性,提出了一种基于 PU 学习的多尺度 AI 生成文本检测器训练方法。通过对检测器训练过程的改进,在同等条件下能取得在长、短 ChatGPT 语料上检测能力的可观提升,解决了目前检测器对于短文本识别精度低的痛点。

  • 论文地址:https://arxiv.org/abs/2305.18149
  • 代码地址 (MindSpore):https://github.com/mindspore-lab/mindone/tree/master/examples/detect_chatgpt
  • 代码地址 (PyTorch):https://github.com/YuchuanTian/AIGC_text_detector

引言

随着大语言模型的生成效果越发逼真,各行各业迫切需要一款可靠的 AI 生成文本检测器。然而,不同行业对检测语料的要求不同,例如在学术界,普遍需要对大段完整的学术文本进行检测;在社交平台上,需要对相对简短而较为支离破碎的假消息进行检测。然而,既有检测器往往无法兼顾各式需求。例如,主流的一些 AI 文本检测器对较短的语料预测能力普遍较差。

对于不同长度语料的不同检测效果,作者观察到较短的 AI 生成文本可能存在着一部分归属上的「不确定性」;或者更直白地说,由于一些 AI 生成短句同时也常常被人类使用,因而很难界定 AI 生成的短文本是否来自于人或 AI。这里列举了几个人和 AI 分别对同一问题做出回答的例子:

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

由这些例子可见,很难对 AI 生成的简短回答进行识别:这类语料与人的区别过小,很难严格判断其真实属性。因此,将短文本简单标注为人类 / AI 并按照传统的二分类问题进行文本检测是不合适的。

针对这个问题,本研究将人类 / AI 的二分类检测部分转化为了一个部分 PU(Positive-Unlabeled)学习问题,即在较短的句子中,人的语言为正类(Positive),机器语言为无标记类(Unlabeled),以此对训练的损失函数进行了改进。此改进可观地提升了检测器在各式语料上的分类效果。

算法细节

在传统的 PU 学习设定下,一个二分类模型只能根据正训练样本和无标记训练样本进行学习。一个常用的 PU 学习方法是通过制定 PU loss 来估计负样本对应的二分类损失:

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

其中,识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了表示正样本与正标签计算的二分类损失;识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了表示将无标记样本全部假定为负标签计算的二分类损失;识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了表示将正样本假定为负标签计算的二分类损失;识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了表示的是先验正样本概率,即正样本在全部 PU 样本中的预估占比。在传统的 PU 学习中,通常将先验识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了设置为一个固定的超参数。然而在文本检测的场景中,检测器需要处理各式长度不同的文本;而对于不同长度的文本而言,其正样本在所有和该样本相同长度的 PU 样本中的预估占比也是不同的。因此,本研究对 PU Loss 进行了改进,提出了长度敏感的多尺度 PU(MPU)loss 损失函数。

具体地,本研究提出了一个抽象的循环模型对较短文本检测进行建模。传统的 NLP 模型在处理序列时,通常是一个马尔可夫链的结构,如 RNN、LSTM 等。此类循环模型的这个过程通常可以理解为一个逐渐迭代的过程,即每个 token 输出的预测,都是由上一个 token 及之前序列的预测结果和该 token 的预测结果经过变换、融合得到的。即以下过程:

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

为了根据这个抽象的模型进行先验概率的估计,需要假定该模型的输出为某个句子为正类(Positive)的置信度,即判定为人说出的样本的概率。假设每个 token 的贡献大小为句子 token 长度的反比,是非正(Positive)即无标记(Unlabeled)的,且为无标记的概率远远大于为正的概率。因为随着大模型的词汇量逐渐逼近人类,绝大部分词汇会同时出现在 AI 和人类语料中。根据这个简化后的模型和设定好的正 token 概率,通过求出不同输入情况下模型输出置信度的总期望,来得到最终的先验估计。

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

通过理论推导和实验,估计得到先验概率随着文本长度的上升而上升,最终逐渐稳定。这种现象也符合预期,因为随着文本变长,检测器可以捕捉的信息更多,文本的 「来源不确定性」也逐渐减弱:

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

之后,对于每个正样本,根据其样本长度得到的独特先验对 PU loss 进行计算。最后,由于较短文本仅有部分 “不确定性”(即较短文本也会含有一些人或者 AI 的文本特征),可以对二分类 loss 和 MPU loss 进行加权相加,作为最终的优化目标:

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

此外需要注意的是,MPU loss 适配的是长度较为多样的训练语料。倘若既有的训练数据单质化明显,大部分语料为大段冗长的文本,则无法全面发挥 MPU 方法的功效。为了使得训练语料的长度更多样化,本研究还引入了一个在句子层面进行多尺度化的模块。该模块随机遮盖训练语料中的部分句子,并对余下句子在保留原有顺序的前提下进行重组。经过训练语料的多尺度化操作,训练文本得到了长度上的极大丰富,从而充分利用了 PU 学习进行 AI 文本检测器训练。

实验结果

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

如上表所示,作者先在较短的 AI 生成语料数据集 Tweep-Fake 上检验 MPU loss 的效果。该数据集中的语料均为推特上较为短小的语段。作者又在传统的语言模型微调基础上将传统二分类 loss 替换为含有 MPU loss 的优化目标。改进之后的语言模型检测器效果较为突出,超过了其它基线算法。

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

作者又对 chatGPT 生成文本进行了检测,经过传统微调得到的语言模型检测器在短句上表现较差;经过 MPU 方式在同等条件下训练得到的检测器在短句上表现良好,且同时能够在完整语料上取得可观的效果提升,F1-score 提升了 1%,超越了 OpenAI 和 DetectGPT 等 SOTA 算法。

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

如上表所示,作者在消融实验中观察了每个部分带来的效果增益。MPU loss 加强了长、短语料的分类效果。

识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了

作者还对比了传统 PU 和 Multiscale PU(MPU)。由上表可见 MPU 效果更胜一筹,能更好地适配 AI 多尺度文本检测的任务。

总结

作者通过提出基于多尺度 PU 学习的方案,解决了文本检测器对于短句识别的难题,随着未来 AIGC 生成模型的泛滥,对于这类内容的检测将会越来越重要。这项研究在 AI 文本检测的问题上迈出了坚实的一步,希望未来会有更多类似的研究,把 AIGC 内容进行更好的管控,防止 AI 生成内容的滥用。

以上是识别「ChatGPT造假」,效果超越OpenAI:北大、华为的AI生成检测器来了的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:51cto.com。如有侵权,请联系admin@php.cn删除