5月27日,创业黑马在北京举办 “2023跃迁•黑马AIGC峰会”。此次大会的主题为“预见新世界,构建新格局”。有“AI专家”之称的卡耐基梅隆大学计算机学院前副院长、达沃斯世界经济论坛(WEF)计算机全球未来理事会前主席贾斯汀•卡塞尔,以及360集团、智源研究院、昆仑万维、云知声、蓝色光标、万兴科技、知道创宇等众多行业内企业高层到场,与上千位参会者进行了深入交流。
在峰会现场,云知声创始人、CEO 黄伟分享了 《通向智享未来之路》主题。
以下为分享内容整理:
开始我们希望按照专家的方式去做,希望交给机器一些方法论,十年前,机器开始从错误反馈里学习。这都是在过去人工智能技术里的大概阶段和路径。
今天OpenAI推出了ChatGPT和预训练模型,整个智能变得更加拟人化,首先我们用非常强大的算力阅读了全世界已知的所有文本,训练形成了大模型。它特别像婴儿大脑,可能有几百亿、上千亿的参数,和人脑不同的是,婴儿最多只是遗传了父母的外表和性格等,但大模型的大脑遗传了知识,这只是初始状态,接下来会通过微调等各种方式,像小孩在成长过程中会有各种教育,整个大模型的演进更加拟人化。
这是整个人工智能的变化。
今天的AGI和之前有什么本质变化?2022年12月份之前,整个人工智能还是一种鉴别式人工智能,做判断题、专用系统和智能模块,做一些特定任务。一方面人工智能的表现并不是那么智能,常被别人诟病“你们提供的是人工智障”,以至于过去人工智能的能力天花板较低。
第二,在很多场景里,客户的需求是千差万别的,但人工智能的能力没那么强,很多公司和团队用各种定制去满足。人工智能企业并不像高科技公司,在过去十年里,只能做鉴别式AI是手工作坊的时代。但现在有了大模型,有更加强大的通用能力,人工智能开始进入工业化时代。
有了新的生成能力、涌现能力,用一个模型就能解决很多场景下的不同问题。今天这个时代,人工智能大模型就是发电机,在发动机没有发明之前,中东国家并没有那么富裕,石油的价值没那么大。就像今天可以把数据变成燃料和能力,用这个能力赋能千行百业。
云知声为什么能够在短时间推出自研大模型?
2016年看到AlphaGo,我们把医疗产品在医院里落地,帮助北京协和医院的医生,极大提高工作效率。在医院这个场景里,只是效率工具是不够的,人工智能真正的智能是认知智能,Transformer是2017年提出来的,认知智能的背后需要比较强大的算力。
有了这些铺垫,无论从学术还是工程化方面,积累了很多经验。这个经验对于个人来讲是你谋生的能力,但是对于公司来说是在市场上胜出的核心竞争力。把ChatGPT框架看了之后,发现没有一项是新的,都是一些已有的工程化组合,我们很快把这种能力结合,投入到大模型研发中。
我们在三天前,发布了商业大模型,名字叫山海。把预训练、指令微调、基于人反馈的增强学习全部跑通,看到了期待已久的涌现能力。那时候团队就在想是不是要给它起个名字,那段时间我在频繁出差,觉得名字还挺好的。海是波澜壮阔,有容乃大,体现出大模型的无限生成能力,山是高山仰止,我们知道什么能说、什么不能说,这恰恰是既要强调大模型的生成能力,又要强调大模型的安全合规问题。
有一个很有意思的现象,大家都在谈大模型,国内对大模型的关注是在春节后,但大家都不谈这个事,心里都没底。到今天为止,有一种观点这件事情只有技术还不能做,哪怕人都到位了,但训练成本很大,是极其烧钱的。大模型不是科学革命、不是发明了新的算法,是把已有的算法组合在一起做大,大都是有代价的,当然还有很多工程在里面。观点是对的。
反过来讲,如果认为未来10-20年大模型是很大的机会,BAT投不进去了,就放弃了,我认为还是有机会的。
云知声在过去的几年里,并不需要特别牛的科学家,我甚至认为这个事就不是科学家干的事情,科学家没有玩过那么多算力,也不知道场景在哪里,所以结果一定是不好的。有场景的厂商反而是最有可能成功的。
起山海这个名字,还有一个意思,所爱隔山海,山海皆可平。
山海之力是十项全能。生成能力是非常主观的,真正在场景落地的时候,语言理解能力很重要,为什么以前觉得是人工智障,因为缺乏理解和代码能力。代码能力的提升能够有助提升大模型的推理能力,输出结果一定要符合国内的法律法规甚至道德价值观等。我们还采用GPT-4 插件的架构,帮助企业和客户,从数据的优选、模型训练、模型部署等一条龙服务。
为什么大模型具备复杂的逻辑推理能力?我们今天做到了,但不知道为什么,到底是500亿参数还是1000亿参数更好,却不好说,可能1000亿参数里面神经元还没有被激活。
另外还有医疗,一开始我们在做大模型,很多人以为云知声做的是垂直行业模型,并不是,我们是做行业应用。挑战了一个最严肃的场景——医疗,通过预训练阶段,收集了很多医学的文献、专著、书籍,病案,积累了几千万真实标注的数据,这些数据可以转化成我们的微调数据。
另外在2019年还获得了北京市科技进步一等奖,获奖项目就是大规模知识图谱构建关键技术及应用,我们有国内最大规模之一的医疗知识图谱,我们把知识图谱分解成知识插件嵌入到大语言模型中,使得大模型变成医疗领域的专家。
MedQA是一个非常权威的医疗知识问答测试集,包括谷歌的Med-PaLM,ChatGPT和GPT-4都在这个测试集上公布了它们的评测结果,山海前不久的评测中做到了81分,大大超过了GPT-4的71分。通过领域增强以后,能够把大模型变成某个领域的专家。还有一个数字可以做横向对比,医学院毕业生要通过临床执业医师考试目前已知的AI最高分数是456分,山海大概考了511分,这就是大模型通过领域增强以后获得的超强能力。
想做大模型还是挺难的,门槛非常高,除了需要很多钱之外、优秀的算法工程师和算法之外,还需要很多能力,我们把它总结为山海之功。直观来讲,大模型本身就是大数据集,大模型是工程师的活儿,云知声为什么能够用几个月的时间就能做出一个非常权威的客观的评测数据,我们内部去评,不只在医疗,在通用领域方面,云知声都是最好之一。
算力平台不是买多少卡来插就行了,云知声差不多有200P算力,利用集群的效率达到业内最顶尖的水平,可以用相对比较少的卡,很快速地训练出我们的模型。
我们目前GPU集群的利用率能做到50%,大模型需要多卡,目前业内的水平大概是42%。大模型还要做到3D混合并行训练。什么是3D?就是模型的并行化、数据的并行化、流水线的并行化,要把任务分离到很多不同机器的不同卡里分别计算,最后能快速得到响应的结果。另外在模型推理里得到了很多优化,推理的速度提高了5倍,怎么样把训练卡和推理卡分开,训练卡是A800,推理卡是在一张单卡A6000上就可以实现快速推理。
另外数据很重要,数据规模、数据多样性、数据高质量,我们现在能做到支持10T级别的快速去重,ChatGPT的训练数去是45T,但是优选之后用了几百G的数据来训练。
有了这些能力之后,就能够基于Atlas和UniDataOps的能力,可以把山海的能力和行业客户更好地提供服务。
智慧物联也是公司的一块重要业务,我们有很多落地,过去用的效果确实不太好,希望有了山海之后,用大模型把已有的物联网的产品全部做一遍。
医疗是我们看好的方向。以前的医疗方向,产品主要有两个方面,一是不用手敲键盘,直接拿麦克风说话,极大提升了医生的工作效率,把病历输入时间从3个小时缩短到了1个小时;二是有了病历之后,还有一套系统,通过AI大脑审核病历,审核病历有没有错误,现在有了AI大模型能力之后能够做什么呢?
山海的愿景是通过人工智能打造互联、直观的世界,以前对人工智能的定义是让机器服从人,今天希望机器更加拟人。人和物的沟通交流会变的更加直观,新的能力会带来新的产品、新的商业模式,非常愿意和在座各位共同迎接大模型的新时代。
扫码加入黑马创业者交流群
↓↓↓
扫描下方二维码
加入黑马AIGC产业营
读懂AIGC底层逻辑,一步接入产业未来
↓↓↓
分享、赞和在看,完成三连击,把好的内容传递给更多需要的人。
更多精彩内容,尽在i黑马视频号
↓↓↓
关注黑马传播矩阵,get更多精彩内容
↓↓ ↓
以上是让机器拟人化,从“人工智障”到“人工智能”的详细内容。更多信息请关注PHP中文网其他相关文章!

轻松在家运行大型语言模型:LM Studio 使用指南 近年来,软件和硬件的进步使得在个人电脑上运行大型语言模型 (LLM) 成为可能。LM Studio 就是一个让这一过程变得轻松便捷的优秀工具。本文将深入探讨如何使用 LM Studio 在本地运行 LLM,涵盖关键步骤、潜在挑战以及在本地拥有 LLM 的优势。无论您是技术爱好者还是对最新 AI 技术感到好奇,本指南都将提供宝贵的见解和实用技巧。让我们开始吧! 概述 了解在本地运行 LLM 的基本要求。 在您的电脑上设置 LM Studi

盖伊·佩里(Guy Peri)是麦考密克(McCormick)的首席信息和数字官。尽管他的角色仅七个月,但Peri正在迅速促进公司数字能力的全面转变。他的职业生涯专注于数据和分析信息

介绍 人工智能(AI)不仅要理解单词,而且要理解情感,从而以人的触感做出反应。 这种复杂的互动对于AI和自然语言处理的快速前进的领域至关重要。 Th

介绍 在当今以数据为中心的世界中,利用先进的AI技术对于寻求竞争优势和提高效率的企业至关重要。 一系列强大的工具使数据科学家,分析师和开发人员都能构建,Depl

本周的AI景观爆炸了,来自Openai,Mistral AI,Nvidia,Deepseek和Hugging Face等行业巨头的开创性发行。 这些新型号有望提高功率,负担能力和可访问性,这在TR的进步中推动了

但是,该公司的Android应用不仅提供搜索功能,而且还充当AI助手,并充满了许多安全问题,可以将其用户暴露于数据盗用,帐户收购和恶意攻击中

您可以查看会议和贸易展览中正在发生的事情。您可以询问工程师在做什么,或咨询首席执行官。 您看的任何地方,事情都以惊人的速度发生变化。 工程师和非工程师 有什么区别

模拟火箭发射的火箭发射:综合指南 本文指导您使用强大的Python库Rocketpy模拟高功率火箭发射。 我们将介绍从定义火箭组件到分析模拟的所有内容


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

Dreamweaver Mac版
视觉化网页开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。