搜索
首页后端开发Python教程python怎么使用OpenCV获取高动态范围成像HDR

    1 背景

    1.1 什么是高动态范围(HDR)成像?

    大多数数码相机和显示器将彩色图像捕获或显示为24位矩阵。由于每个颜色通道具有8位,而共有三个通道,因此每个通道的像素值范围是0至255。换句话说,普通相机或显示器具有有限的动态范围。

    然而,我们周围的世界颜色有一个非常大的变化范围。当灯关闭时,车库会变黑;太阳照射下,车库看起来变得非常明亮。即使忽略极端情况,八位在常规情况下也几乎无法完全捕捉场景。因此,相机会尝试估计光线并自动设置曝光,以使图像中最有用的部分具有良好的动态颜色范围,而太暗和太亮的部分分别被设置为0和255。

    在下图中,左侧的图像是正常曝光的图像。请注意,背景中的天空已完全消失,因为相机决定使用一个能够让小孩被正确拍摄而明亮的天空被忽略的设置。右侧图像是iPhone生成的HDR图像。

    python怎么使用OpenCV获取高动态范围成像HDR

    iPhone通过在三种不同的曝光下拍摄三张图片来捕获HDR图像。图像是连续快速拍摄的,因此三次拍摄之间几乎没有偏移。然后组合三个图像以产生HDR图像。

    1.2 高动态范围(HDR)成像如何工作?

    在本节中,我们将介绍使用OpenCV创建HDR图像的步骤。

    1)使用不同曝光设置拍摄多张图像

    当我们在使用相机拍摄时,每个通道只有8位用于表示场景的动态范围(亮度范围)。但是我们可以通过改变快门速度在不同曝光下拍摄场景的多个图像。大多数单反相机都有一个称为自动包围曝光(AEB)的功能,只需按一下按钮,我们就可以在不同曝光下拍摄多张照片。在相机上使用AEB或在手机上使用自动包围应用程序,我们可以一个接一个地快速拍摄多张照片,因此场景不会改变。若要在iPhone上使用HDR模式,则需要拍摄三张照片(对于安卓手机则可下载超级相机应用程序实现此功能)。

    • 1曝光不足的图像:此图片比正确的曝光图像暗。目标是拍摄非常明亮的图像部分。

    • 2正确曝光的图像:这是相机根据估计的照明度拍摄的常规图像。

    • 3过度曝光的图像:此图片比正确的曝光图像亮。目标是捕捉非常黑暗的图像部分。

    当场景的动态范围非常大时,我们可以采用拍摄三张或更多照片的方法来生成HDR图像。在本教程中,我们将使用曝光时间为1/30,0.25,2.5和15秒拍摄的4张图像。缩略图如下所示。

    python怎么使用OpenCV获取高动态范围成像HDR

    通常,与SLR相机或手机相关的曝光时间和其他设置的信息会被储存在JPEG文件的EXIF元数据中。您可以通过以下链接学习如何查看存储在Windows和Mac中的JPEG文件中的EXIF元数据。

    windows下右键图片-属性-详细信息,有图像具体信息。如下所示:

    python怎么使用OpenCV获取高动态范围成像HDR

    或者,您可以使用我最喜欢的名为EXIFTOOL的EXIF命令行实用程序。

    2 代码

    2.1 运行环境配置

    由于本文所用代码涉及到opencv非免费代码,createTonemapMantiuk这部分算法都是申请专利需要收费(本文可以不要这段代码)。在使用时编译opencv和opencv_contrib需要选择OPENCV_ENABLE_NONFREE

    如果是python,直接安装指定版本opencv就行了:

    pip install opencv-contrib-python==3.4.2.17

    在使用非免费代码

    头文件和命名空间如下:

    #include <opencv2/xphoto.hpp>
    using namespace xphoto;

    2.2 读取图像和曝光时间

    手动输入图像,曝光时间以及图像个数。

    代码如下: C++:

    /**
     * @brief 读图
     *
     * @param images
     * @param times
     */
    void readImagesAndTimes(vector<Mat> &images, vector<float> &times)
    {
        //图像个数
        int numImages = 3;
        //图像曝光时间
        static const float timesArray[] = { 1.0 / 25 ,1.0 / 17, 1.0 / 13 };
        times.assign(timesArray, timesArray + numImages);
    
        static const char* filenames[] = { "1_25.jpg", "1_17.jpg", "1_13.jpg"};
        //读取图像
        for (int i = 0; i < numImages; i++)
        {
            Mat im = imread(filenames[i]);
            images.push_back(im);
        }
    }

    python:

    def readImagesAndTimes():
      # List of exposure times
      times = np.array([ 1/30.0, 0.25, 2.5, 15.0 ], dtype=np.float32)
    
      # List of image filenames
      filenames = ["img_0.033.jpg", "img_0.25.jpg", "img_2.5.jpg", "img_15.jpg"]
      images = []
      for filename in filenames:
        im = cv2.imread(filename)
        images.append(im)
      return images, times

    2.3 图像对齐

    用于合成HDR图像的原始图像未对准可能导致严重的伪影。在下图中,左侧图像是使用未对齐图像组成的HDR图像,右侧图像是使用对齐图像的图像。我们在左侧图像中发现了明显的重叠缺陷,这是通过放大图像的一部分并使用红色圆圈进行标识得出的。

    python怎么使用OpenCV获取高动态范围成像HDR

    当然,在拍摄用于创建HDR图像的照片时,专业摄影师将相机安装在三脚架上。他们还使用一种称为反光镜锁死的功能来减少额外的振动。即使这样,图像也可能无法完美对齐,因为无法保证无振动的环境。使用手持相机或手机拍摄图像时,对齐问题会变得更糟。

    OpenCV 提供了一个简单的AlignMTB方法,可以幸运地对齐这些图像。所有图像都会被转换为中值阈值位图(MTB)格式,这是由该算法完成的。图像的MTB生成方式为将比中值亮度亮的点分配为1,其余为0。MTB不随曝光时间的改变而改变。因此不需要我们指定曝光时间就可以对齐MTB。

    代码如下:

    C++:

    // Align input images
    Ptr&lt;AlignMTB&gt; alignMTB = createAlignMTB();
    alignMTB-&gt;process(images, images);

    python:

    # Align input images
    alignMTB = cv2.createAlignMTB()
    alignMTB.process(images, images)

    2.4 恢复相机响应功能

    典型相机的响应与场景亮度不是线性的。如果一个摄像机拍摄到两个物体,其中一个物体的亮度是另一个物体在现实世界中的两倍,那么这句话的意思是什么?。当您测量照片中两个对象的像素强度时,较亮对象的像素值将不会是较暗对象的两倍。如果不考虑相机的响应函数(CRF),就无法将多张图像合并为一个HDR图像。将多个曝光图像合并为HDR图像意味着什么?

    在图像的某个位置(x,y)仅考虑一个像素。如果CRF是线性的,则像素值将与曝光时间成正比,除非像素在特定图像中太暗(即接近0)或太亮(即接近255)。我们可以过滤出这些不好的像素(太暗或太亮),并且将像素值除以曝光时间来估计像素的亮度,然后在像素不差的所有图像(太暗或太亮)上对亮度值取平均。我们可以对所有像素进行这样的处理,并通过对“好”像素进行平均来获得所有像素的单张图像。但是CRF不是线性的,我们需要在评估CRF前把图像强度变成线性。

    好消息是,如果我们知道每张图像的曝光时间,可以从图像中估算CRF。与计算机视觉中的许多问题一样,找到CRF的问题被设置为优化问题,其中目标是最小化由数据项和平滑项组成的目标函数。这些问题通常会减少到使用奇异值分解(SVD)求解的线性最小二乘问题,而奇异值分解是所有线性代数包的一部分。CRF恢复算法细节见论文Recovering High Dynamic Range Radiance Maps from Photographs。

    使用CalibrateDebevec或在OpenCV中仅使用两行代码来查找CRF CalibrateRobertson。在本教程中我们将使用CalibrateDebevec。

    代码如下:

    C++:

    // Obtain Camera Response Function (CRF)
    Mat responseDebevec;
    Ptr&lt;CalibrateDebevec&gt; calibrateDebevec = createCalibrateDebevec();
    calibrateDebevec-&gt;process(images, responseDebevec, times);

    python:

    # Obtain Camera Response Function (CRF)
    calibrateDebevec = cv2.createCalibrateDebevec()
    responseDebevec = calibrateDebevec.process(images, times)

    下图显示了使用红色,绿色和蓝色通道图像恢复的CRF。

    python怎么使用OpenCV获取高动态范围成像HDR

    2.5 合并图像

    当我们完成对CRF的估计时,便可以将曝光图像合并为一个HDR图像,即MergeDebevec算法。C ++和Python代码如下所示。

    C++:

    // Merge images into an HDR linear image
    Mat hdrDebevec;
    Ptr&lt;MergeDebevec&gt; mergeDebevec = createMergeDebevec();
    mergeDebevec-&gt;process(images, hdrDebevec, times, responseDebevec);
    // Save HDR image.
    imwrite("hdrDebevec.hdr", hdrDebevec);

    Python:

    # Merge images into an HDR linear image
    mergeDebevec = cv2.createMergeDebevec()
    hdrDebevec = mergeDebevec.process(images, times, responseDebevec)
    # Save HDR image.
    cv2.imwrite("hdrDebevec.hdr", hdrDebevec)

    上面保存的HDR图像可以在Photoshop中加载并进行色调映射。一个例子如下所示。

    python怎么使用OpenCV获取高动态范围成像HDR

    2.6 色调映射

    现在我们将曝光图像合并为一个HDR图像。你能猜出这张图片的最小和最大像素值吗?对于漆黑条件,最小值显然为0。什么是理论最大值?无穷!实际上,不同情况下的最大值是不同的。如果场景包含非常明亮的光源,我们将看到非常大的最大值。我们已经利用多个图像恢复了相对亮度信息,但我们现在的难点在于将其编码为24位图像以便于显示。

    色调映射:将高动态范围(HDR)图像转换为每通道8位图像同时保留尽可能多的细节的过程称为色调映射。

    有几种色调映射算法。OpenCV实现了其中的四个。要记住的是,没有正确的方法来进行色调映射。通常,我们希望在色调映射图像中看到比在任何一个曝光图像中更多的细节。有时,色调映射的目标是产生逼真的图像,并且通常目标是产生超现实的图像。OpenCV实现的算法偏向于生成逼真的结果,因此可能不太引人注目。

    我们来看看各种选项。下面列出了不同色调映射算法的一些常见参数。

    • 1)伽马gamma:此参数通过应用伽马校正来压缩动态范围。当gamma等于1时,不应用校正。小于1的灰度会使图像变暗,而大于1的灰度会使图像变亮。

    • 2)饱和度saturation:此参数用于增加或减少饱和度。当饱和度高时,颜色更丰富,更强烈。饱和度值接近零,使颜色渐渐变为灰度。

    • 3)对比度contrast:控制输出图像的对比度(即log(maxPixelValue / minPixelValue))。

    让我们来探索OpenCV中可用的四种色调映射算法

    • Drago Tonemap

    Drago Tonemap的参数如下所示:

    createTonemapDrago
    (
    float   gamma = 1.0f,
    float   saturation = 1.0f,
    float   bias = 0.85f
    )

    这里,bias是[0,1]范围内偏置函数的值。从0.7到0.9的值通常会得到最好的结果。默认值为0.85。有关更多技术细节,请参阅此文章。参数通过反复试验获得。最终输出乘以3只是因为它给出了最令人满意的结果。更多的技术细节见:

    结果如下所示:

    python怎么使用OpenCV获取高动态范围成像HDR

    • Durand Tonemap

    Durand Tonemap的参数如下所示:

    createTonemapDurand
    (
      float     gamma = 1.0f,
      float     contrast = 4.0f,
      float     saturation = 1.0f,
      float     sigma_space = 2.0f,
      float     sigma_color = 2.0f
    );

    该算法基于将图像分解为基础层和细节层。使用称为双边滤波器的边缘保留滤波器获得基础层。双边滤波器中的参数sigma_space和sigma_color分别影响空间域和颜色域的平滑程度。更多的技术细节见:

    结果如下所示:

    python怎么使用OpenCV获取高动态范围成像HDR

    • Reinhard Tonemap

    Reinhard Tonemap的参数如下所示:

    createTonemapReinhard
    (
    float   gamma = 1.0f,
    float   intensity = 0.0f,
    float   light_adapt = 1.0f,
    float   color_adapt = 0.0f
    )

    参数intensity应在[-8,8]范围内。强度值越大,结果越明亮。参数light_adapt控制灯光适应并且在[0,1]范围内。值1表示仅基于像素值的自适应,值0表示全局自适应。中间值可以用于两者的加权组合。参数color_adapt控制色度适应并且在[0,1]范围内。当值为1时,通道单独处理;当值为0时,所有通道适应级别相同。中间值可用于两者的加权组合。更多的技术细节见:

    结果如下所示:

    python怎么使用OpenCV获取高动态范围成像HDR

    • Mantiuk Tonemap

    Mantiuk Tonemap的参数如下所示:

    createTonemapMantiuk
    
    (
    
    float   gamma = 1.0f,
    
    float   scale = 0.7f,
    
    float   saturation = 1.0f
    
    )

    scale是对比度比例因子。从0.6到0.9的值产生最佳结果。更多的技术细节见:

    结果如下所示:

    python怎么使用OpenCV获取高动态范围成像HDR

    上面所有色调映射代码见:

    C++:

        // Tonemap using Drago&#39;s method to obtain 24-bit color image 色调映射算法
        cout &lt;&lt; "Tonemaping using Drago&#39;s method ... ";
        Mat ldrDrago;
        Ptr&lt;TonemapDrago&gt; tonemapDrago = createTonemapDrago(1.0, 0.7);
        tonemapDrago-&gt;process(hdrDebevec, ldrDrago);
        ldrDrago = 3 * ldrDrago;
        imwrite("ldr-Drago.jpg", ldrDrago * 255);
        cout &lt;&lt; "saved ldr-Drago.jpg" &lt;&lt; endl;
    
        // Tonemap using Durand&#39;s method obtain 24-bit color image 色调映射算法
        cout &lt;&lt; "Tonemaping using Durand&#39;s method ... ";
        Mat ldrDurand;
        Ptr&lt;TonemapDurand&gt; tonemapDurand = createTonemapDurand(1.5, 4, 1.0, 1, 1);
        tonemapDurand-&gt;process(hdrDebevec, ldrDurand);
        ldrDurand = 3 * ldrDurand;
        imwrite("ldr-Durand.jpg", ldrDurand * 255);
        cout &lt;&lt; "saved ldr-Durand.jpg" &lt;&lt; endl;
    
        // Tonemap using Reinhard&#39;s method to obtain 24-bit color image 色调映射算法
        cout &lt;&lt; "Tonemaping using Reinhard&#39;s method ... ";
        Mat ldrReinhard;
        Ptr&lt;TonemapReinhard&gt; tonemapReinhard = createTonemapReinhard(1.5, 0, 0, 0);
        tonemapReinhard-&gt;process(hdrDebevec, ldrReinhard);
        imwrite("ldr-Reinhard.jpg", ldrReinhard * 255);
        cout &lt;&lt; "saved ldr-Reinhard.jpg" &lt;&lt; endl;
    
        // Tonemap using Mantiuk&#39;s method to obtain 24-bit color image 色调映射算法
        cout &lt;&lt; "Tonemaping using Mantiuk&#39;s method ... ";
        Mat ldrMantiuk;
        Ptr&lt;TonemapMantiuk&gt; tonemapMantiuk = createTonemapMantiuk(2.2, 0.85, 1.2);
        tonemapMantiuk-&gt;process(hdrDebevec, ldrMantiuk);
        ldrMantiuk = 3 * ldrMantiuk;
        imwrite("ldr-Mantiuk.jpg", ldrMantiuk * 255);
        cout &lt;&lt; "saved ldr-Mantiuk.jpg" &lt;&lt; endl;

    Python:

      # Tonemap using Drago&#39;s method to obtain 24-bit color image
      print("Tonemaping using Drago&#39;s method ... ")
      tonemapDrago = cv2.createTonemapDrago(1.0, 0.7)
      ldrDrago = tonemapDrago.process(hdrDebevec)
      ldrDrago = 3 * ldrDrago
      cv2.imwrite("ldr-Drago.jpg", ldrDrago * 255)
      print("saved ldr-Drago.jpg")
    
      # Tonemap using Durand&#39;s method obtain 24-bit color image
      print("Tonemaping using Durand&#39;s method ... ")
      tonemapDurand = cv2.createTonemapDurand(1.5,4,1.0,1,1)
      ldrDurand = tonemapDurand.process(hdrDebevec)
      ldrDurand = 3 * ldrDurand
      cv2.imwrite("ldr-Durand.jpg", ldrDurand * 255)
      print("saved ldr-Durand.jpg")
    
      # Tonemap using Reinhard&#39;s method to obtain 24-bit color image
      print("Tonemaping using Reinhard&#39;s method ... ")
      tonemapReinhard = cv2.createTonemapReinhard(1.5, 0,0,0)
      ldrReinhard = tonemapReinhard.process(hdrDebevec)
      cv2.imwrite("ldr-Reinhard.jpg", ldrReinhard * 255)
      print("saved ldr-Reinhard.jpg")
    
      # Tonemap using Mantiuk&#39;s method to obtain 24-bit color image
      print("Tonemaping using Mantiuk&#39;s method ... ")
      tonemapMantiuk = cv2.createTonemapMantiuk(2.2,0.85, 1.2)
      ldrMantiuk = tonemapMantiuk.process(hdrDebevec)
      ldrMantiuk = 3 * ldrMantiuk
      cv2.imwrite("ldr-Mantiuk.jpg", ldrMantiuk * 255)
      print("saved ldr-Mantiuk.jpg")

    2.7 工程代码

    本文所有代码见:

    C++:

    #include "pch.h"
    #include <opencv2/opencv.hpp>
    #include <opencv2/xphoto.hpp>
    #include <vector>
    #include <iostream>
    #include <fstream>
    using namespace cv;
    using namespace std;
    using namespace xphoto;
    /**
     * @brief 读图
     *
     * @param images
     * @param times
     */
    void readImagesAndTimes(vector<Mat> &images, vector<float> &times)
    {
        //图像个数
        int numImages = 3;
        //图像曝光时间
        static const float timesArray[] = { 1.0 / 25 ,1.0 / 17, 1.0 / 13 };
        times.assign(timesArray, timesArray + numImages);
        static const char* filenames[] = { "1_25.jpg", "1_17.jpg", "1_13.jpg"};
        //读取图像
        for (int i = 0; i < numImages; i++)
        {
            Mat im = imread(filenames[i]);
            images.push_back(im);
        }
    }
    int main()
    {
        // Read images and exposure times 读取图像和图像曝光时间
        cout << "Reading images ... " << endl;
        //图像
        vector<Mat> images;
        //曝光时间
        vector<float> times;
        //读取图像和图像曝光时间
        readImagesAndTimes(images, times);
        // Align input images 图像对齐
        cout << "Aligning images ... " << endl;
        Ptr<AlignMTB> alignMTB = createAlignMTB();
        alignMTB->process(images, images);
    
        // Obtain Camera Response Function (CRF) 获得CRF
        cout << "Calculating Camera Response Function (CRF) ... " << endl;
        Mat responseDebevec;
        Ptr<CalibrateDebevec> calibrateDebevec = createCalibrateDebevec();
        calibrateDebevec->process(images, responseDebevec, times);
    
        // Merge images into an HDR linear image 图像合并为HDR图像
        cout << "Merging images into one HDR image ... ";
        Mat hdrDebevec;
        Ptr<MergeDebevec> mergeDebevec = createMergeDebevec();
        mergeDebevec->process(images, hdrDebevec, times, responseDebevec);
        // Save HDR image. 保存HDR图像
        imwrite("hdrDebevec.hdr", hdrDebevec);
        cout << "saved hdrDebevec.hdr " << endl;
    
        // Tonemap using Drago&#39;s method to obtain 24-bit color image 色调映射算法
        cout << "Tonemaping using Drago&#39;s method ... ";
        Mat ldrDrago;
        Ptr<TonemapDrago> tonemapDrago = createTonemapDrago(1.0, 0.7);
        tonemapDrago->process(hdrDebevec, ldrDrago);
        ldrDrago = 3 * ldrDrago;
        imwrite("ldr-Drago.jpg", ldrDrago * 255);
        cout << "saved ldr-Drago.jpg" << endl;
    
        // Tonemap using Durand&#39;s method obtain 24-bit color image 色调映射算法
        cout << "Tonemaping using Durand&#39;s method ... ";
        Mat ldrDurand;
        Ptr<TonemapDurand> tonemapDurand = createTonemapDurand(1.5, 4, 1.0, 1, 1);
        tonemapDurand->process(hdrDebevec, ldrDurand);
        ldrDurand = 3 * ldrDurand;
        imwrite("ldr-Durand.jpg", ldrDurand * 255);
        cout << "saved ldr-Durand.jpg" << endl;
        // Tonemap using Reinhard&#39;s method to obtain 24-bit color image 色调映射算法
        cout << "Tonemaping using Reinhard&#39;s method ... ";
        Mat ldrReinhard;
        Ptr<TonemapReinhard> tonemapReinhard = createTonemapReinhard(1.5, 0, 0, 0);
        tonemapReinhard->process(hdrDebevec, ldrReinhard);
        imwrite("ldr-Reinhard.jpg", ldrReinhard * 255);
        cout << "saved ldr-Reinhard.jpg" << endl;
        // Tonemap using Mantiuk&#39;s method to obtain 24-bit color image 色调映射算法
        cout << "Tonemaping using Mantiuk&#39;s method ... ";
        Mat ldrMantiuk;
        Ptr<TonemapMantiuk> tonemapMantiuk = createTonemapMantiuk(2.2, 0.85, 1.2);
        tonemapMantiuk->process(hdrDebevec, ldrMantiuk);
        ldrMantiuk = 3 * ldrMantiuk;
        imwrite("ldr-Mantiuk.jpg", ldrMantiuk * 255);
        cout << "saved ldr-Mantiuk.jpg" << endl;
        return 0;
    }

    Python:

    import cv2
    import numpy as np
    def readImagesAndTimes():
      times = np.array([ 1/30.0, 0.25, 2.5, 15.0 ], dtype=np.float32)
      filenames = ["img_0.033.jpg", "img_0.25.jpg", "img_2.5.jpg", "img_15.jpg"]
      images = []
      for filename in filenames:
        im = cv2.imread(filename)
        images.append(im)
      return images, times
    if __name__ == &#39;__main__&#39;:
      # Read images and exposure times
      print("Reading images ... ")
      images, times = readImagesAndTimes()
      # Align input images
      print("Aligning images ... ")
      alignMTB = cv2.createAlignMTB()
      alignMTB.process(images, images)
      # Obtain Camera Response Function (CRF)
      print("Calculating Camera Response Function (CRF) ... ")
      calibrateDebevec = cv2.createCalibrateDebevec()
      responseDebevec = calibrateDebevec.process(images, times)
      # Merge images into an HDR linear image
      print("Merging images into one HDR image ... ")
      mergeDebevec = cv2.createMergeDebevec()
      hdrDebevec = mergeDebevec.process(images, times, responseDebevec)
      # Save HDR image.
      cv2.imwrite("hdrDebevec.hdr", hdrDebevec)
      print("saved hdrDebevec.hdr ")
      # Tonemap using Drago&#39;s method to obtain 24-bit color image
      print("Tonemaping using Drago&#39;s method ... ")
      tonemapDrago = cv2.createTonemapDrago(1.0, 0.7)
      ldrDrago = tonemapDrago.process(hdrDebevec)
      ldrDrago = 3 * ldrDrago
      cv2.imwrite("ldr-Drago.jpg", ldrDrago * 255)
      print("saved ldr-Drago.jpg")
      # Tonemap using Durand&#39;s method obtain 24-bit color image
      print("Tonemaping using Durand&#39;s method ... ")
      tonemapDurand = cv2.createTonemapDurand(1.5,4,1.0,1,1)
      ldrDurand = tonemapDurand.process(hdrDebevec)
      ldrDurand = 3 * ldrDurand
      cv2.imwrite("ldr-Durand.jpg", ldrDurand * 255)
      print("saved ldr-Durand.jpg")
      # Tonemap using Reinhard&#39;s method to obtain 24-bit color image
      print("Tonemaping using Reinhard&#39;s method ... ")
      tonemapReinhard = cv2.createTonemapReinhard(1.5, 0,0,0)
      ldrReinhard = tonemapReinhard.process(hdrDebevec)
      cv2.imwrite("ldr-Reinhard.jpg", ldrReinhard * 255)
      print("saved ldr-Reinhard.jpg")
      # Tonemap using Mantiuk&#39;s method to obtain 24-bit color image
      print("Tonemaping using Mantiuk&#39;s method ... ")
      tonemapMantiuk = cv2.createTonemapMantiuk(2.2,0.85, 1.2)
      ldrMantiuk = tonemapMantiuk.process(hdrDebevec)
      ldrMantiuk = 3 * ldrMantiuk
      cv2.imwrite("ldr-Mantiuk.jpg", ldrMantiuk * 255)
      print("saved ldr-Mantiuk.jpg")

    以上是python怎么使用OpenCV获取高动态范围成像HDR的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明
    本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
    Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

    Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

    Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

    选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

    达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

    通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

    最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

    在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

    在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

    Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

    Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

    Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

    每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

    每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

    Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

    Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

    See all articles

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    Video Face Swap

    Video Face Swap

    使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

    热工具

    SublimeText3 Linux新版

    SublimeText3 Linux新版

    SublimeText3 Linux最新版

    VSCode Windows 64位 下载

    VSCode Windows 64位 下载

    微软推出的免费、功能强大的一款IDE编辑器

    MinGW - 适用于 Windows 的极简 GNU

    MinGW - 适用于 Windows 的极简 GNU

    这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

    Dreamweaver Mac版

    Dreamweaver Mac版

    视觉化网页开发工具

    DVWA

    DVWA

    Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中