搜索
首页Javajava教程Java数据结构七大排序怎么使用

    一、插入排序

    1、直接插入排序

    当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]与array[i-1],array[i-2],…进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移。

    数据越接近有序,直接插入排序的时间消耗越少。

    时间复杂度:O(N^2)

    空间复杂度O(1),是一种稳定的算法

    直接插入排序:

    Java数据结构七大排序怎么使用

        public static void insertSort(int[] array){
            for (int i = 1; i < array.length; i++) {
                int tmp=array[i];
                int j=i-1;
                for(;j>=0;--j){
                    if(array[j]>tmp){
                        array[j+1]=array[j];
                    }else{
                        break;
                    }
                }
                array[j+1]=tmp;
            }
        }

    2、希尔排序

    希尔排序法的基本思想是:先选定一个整数gap,把待排序文件中所有记录分成gap个组,所有距离为gap的数分在同一组内,并对每一组内的数进行直接插入排序。然后取gap=gap/2,重复上述分组和排序的工作。当gap=1时,所有数在一组内进行直接插入排序。

    • 希尔排序是对直接插入排序的优化。 

    • 目的是让数组更接近于有序,因此当gap > 1时进行预排序。插入排序在gap为1时可以快速地对接近有序的数组进行排序。

    • 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算。

     希尔排序 :

    Java数据结构七大排序怎么使用

    public static void shellSort(int[] array){
            int size=array.length;
            //这里定义gap的初始值为数组长度的一半
            int gap=size/2;
            while(gap>0){
                //间隔为gap的直接插入排序
                for (int i = gap; i < size; i++) {
                    int tmp=array[i];
                    int j=i-gap;
                    for(;j>=0;j-=gap){
                        if(array[j]>tmp){
                            array[j+gap]=array[j];
                        }else{
                            break;
                        }
                    }
                    array[j+gap]=tmp;
                }
                gap/=2;
            }
        }

    二、选择排序

    1、选择排序

    • 在元素集合array[i]--array[n-1]中选择最小的数据元素

    • 若它不是这组元素中的第一个,则将它与这组元素中的第一个元素交换

    • 在剩余的集合中,重复上述步骤,直到集合剩余1个元素

    时间复杂度:O(N^2)

    空间复杂度为O(1),不稳定

    选择排序 :

    Java数据结构七大排序怎么使用

        //交换
        private static void swap(int[] array,int i,int j){
            int tmp=array[i];
            array[i]=array[j];
            array[j]=tmp;
        }
        //选择排序
        public static void chooseSort(int[] array){
            for (int i = 0; i < array.length; i++) {
                int minIndex=i;//记录最小值的下标
                for (int j = i+1; j < array.length; j++) {
                    if (array[j]<array[minIndex]) {
                        minIndex=j;
                    }
                }
                swap(array,i,minIndex);
            }
        }

    2、堆排序

    堆排序的两种思路(以升序为例):

    • 创建小根堆,依次取出堆顶元素放入数组中,直到堆为空

    • 创建大根堆,定义堆的尾元素位置key,每次交换堆顶元素和key位置的元素(key--),直到key到堆顶,此时将堆中元素层序遍历即为升序(如下)

    时间复杂度:O(N^2)

    空间复杂度:O(N),不稳定

    堆排序:

    Java数据结构七大排序怎么使用

        //向下调整
        public static void shiftDown(int[] array,int parent,int len){
            int child=parent*2+1;
            while(child<len){
                if(child+1<len){
                    if(array[child+1]>array[child]){
                        child++;
                    }
                }
                if(array[child]>array[parent]){
                    swap(array,child,parent);
                    parent=child;
                    child=parent*2+1;
                }else{
                    break;
                }
     
            }
        }
        //创建大根堆
        private static void createHeap(int[] array){
            for (int parent = (array.length-1-1)/2; parent >=0; parent--) {
                shiftDown(array,parent,array.length);
            }
        }
        //堆排序
        public static void heapSort(int[] array){
            //创建大根堆
            createHeap(array);
            //排序
            for (int i = array.length-1; i >0; i--) {
                swap(array,0,i);
                shiftDown(array,0,i);
            }
        }

    三、交换排序

    1、冒泡排序

    两层循环,第一层循环表示要排序的趟数,第二层循环表示每趟要比较的次数;这里的冒泡排序做了优化,在每一趟比较时,我们可以定义一个计数器来记录数据交换的次数,如果没有交换,则表示数据已经有序,不需要再进行排序了。

    时间复杂度:O(N^2)

    空间复杂度为O(1),是一个稳定的排序

    冒泡排序:

    Java数据结构七大排序怎么使用

       public static void bubbleSort(int[] array){
            for(int i=0;i<array.length-1;++i){
                int count=0;
                for (int j = 0; j < array.length-1-i; j++) {
                    if(array[j]>array[j+1]){
                        swap(array,j,j+1);
                        count++;
                    }
                }
                if(count==0){
                    break;
                }
            }
        }

    2、快速排序

    任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

    时间复杂度:最好O(n*logn):每次可以尽量将待排序的序列均匀分割

                         最坏O(N^2):待排序序列本身是有序的

    空间复杂度:最好O(logn)、  最坏O(N)。不稳定的排序

    (1)挖坑法

    当数据有序时,快速排序就相当于二叉树没有左子树或右子树,此时空间复杂度会达到O(N),如果大量数据进行排序,可能会导致栈溢出。

    public static void quickSort(int[] array,int left,int right){
            if(left>=right){
                return;
            }
            int l=left;
            int r=right;
            int tmp=array[l];
            while(l<r){
                while(array[r]>=tmp&&l<r){
                //等号不能省略,如果省略,当序列中存在相同的值时,程序会死循环
                    r--;
                }
                array[l]=array[r];
                while(array[l]<=tmp&&l<r){
                    l++;
                }
                array[r]=array[l];
            }
            array[l]=tmp;
            quickSort(array,0,l-1);
            quickSort(array,l+1,right);
        }

    (2)快速排序的优化

    三数取中法选key

    关于key值的选取,如果待排序序列是有序的,那么我们选取第一个或最后一个作为key可能导致分割的左边或右边为空,这时快速排序的空间复杂度会比较大,容易造成栈溢出。那么我们可以采用三数取中法来取消这种情况。以序列中第一个、最后一个和中间一个元素的中间值作为key值。

     //key值的优化,只在快速排序中使用,则可以为private
        private int threeMid(int[] array,int left,int right){
            int mid=(left+right)/2;
            if(array[left]>array[right]){
                if(array[mid]>array[left]){
                    return left;
                }
                return array[mid]<array[right]?right:mid;
            }else{
                if(array[mid]<array[left]){
                    return left;
                }
                return array[mid]>array[right]?right:mid;
            }
        }

    递归到小的子区间时,可以考虑用插入排序

    随着我们递归的进行,区间会变的越来越小,我们可以在区间小到一个值的时候,对其进行插入排序,这样代码的效率会提高很多。

    (3)快速排序的非递归实现

     //找到一次划分的下标
        public static int patition(int[] array,int left,int right){
            int tmp=array[left];
            while(left<right){
                while(left<right&&array[right]>=tmp){
                    right--;
                }
                array[left]=array[right];
                while(left<right&&array[left]<=tmp){
                    left++;
                }
                array[right]=array[left];
            }
            array[left]=tmp;
            return left;
        }
        //快速排序的非递归
        public static void quickSort2(int[] array){
            Stack<Integer> stack=new Stack<>();
            int left=0;
            int right=array.length-1;
            stack.push(left);
            stack.push(right);
            while(!stack.isEmpty()){
                int r=stack.pop();
                int l=stack.pop();
                int p=patition(array,l,r);
                if(p-1>l){
                    stack.push(l);
                    stack.push(p-1);
                }
                if(p+1<r){
                    stack.push(p+1);
                    stack.push(r);
                }
            }
        }

    四、归并排序

    归并排序(MERGE-SORT):该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。实现序列的完全有序,需要将已经有序的子序列合并,即先让每个子序列有序,然后再将相邻的子序列段有序。若将两个有序表合并成一个有序表,称为二路归并。

    时间复杂度:O(n*logN)(无论有序还是无序)

    空间复杂度:O(N)。是稳定的排序。

    Java数据结构七大排序怎么使用

        //归并排序:递归
        public static void mergeSort(int[] array,int left,int right){
            if(left>=right){
                return;
            }
            int mid=(left+right)/2;
            //递归分割
            mergeSort(array,left,mid);
            mergeSort(array,mid+1,right);
            //合并
            merge(array,left,right,mid);
        }
        //非递归
        public static void mergeSort1(int[] array){
            int gap=1;
            while(gap<array.length){
                for (int i = 0; i < array.length; i+=2*gap) {
                    int left=i;
                    int mid=left+gap-1;
                    if(mid>=array.length){
                        mid=array.length-1;
                    }
                    int right=left+2*gap-1;
                    if(right>=array.length){
                        right=array.length-1;
                    }
                    merge(array,left,right,mid);
                }
                gap=gap*2;
            }
        } 
        //合并:合并两个有序数组
        public static void merge(int[] array,int left,int right,int mid){
            int[] tmp=new int[right-left+1];
            int k=0;
            int s1=left;
            int e1=mid;
            int s2=mid+1;
            int e2=right;
            while(s1<=e1&&s2<=e2){
                if(array[s1]<=array[s2]){
                    tmp[k++]=array[s1++];
                }else{
                    tmp[k++]=array[s2++];
                }
            }
            while(s1<=e1){
                tmp[k++]=array[s1++];
            }
            while(s2<=e2){
                tmp[k++]=array[s2++];
            }
            for (int i = left; i <= right; i++) {
                array[i]=tmp[i-left];
            }
        }

    五、排序算法的分析

    排序方法 最好时间复杂度 最坏时间复杂度 空间复杂度 稳定性
    直接插入排序 O(n) O(n^2) O(1) 稳定
    希尔排序 O(n) O(n^2) O(1) 不稳定
    直接排序 O(n^2) O(n^2) O(1) 不稳定
    堆排序 O(nlog(2)n) O(nlog(2)n) O(1) 不稳定
    冒泡排序 O(n) O(n^2) O(1) 稳定
    快速排序 O(nlog(2)n) O(n^2) O(nlog(2)n) 不稳定
    归并排序 O(nlog(2)n) O(nlog(2)n) O(n) 稳定

    以上是Java数据结构七大排序怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明
    本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
    是否有任何威胁或增强Java平台独立性的新兴技术?是否有任何威胁或增强Java平台独立性的新兴技术?Apr 24, 2025 am 12:11 AM

    新兴技术对Java的平台独立性既有威胁也有增强。1)云计算和容器化技术如Docker增强了Java的平台独立性,但需要优化以适应不同云环境。2)WebAssembly通过GraalVM编译Java代码,扩展了其平台独立性,但需与其他语言竞争性能。

    JVM的实现是什么,它们都提供了相同的平台独立性?JVM的实现是什么,它们都提供了相同的平台独立性?Apr 24, 2025 am 12:10 AM

    不同JVM实现都能提供平台独立性,但表现略有不同。1.OracleHotSpot和OpenJDKJVM在平台独立性上表现相似,但OpenJDK可能需额外配置。2.IBMJ9JVM在特定操作系统上表现优化。3.GraalVM支持多语言,需额外配置。4.AzulZingJVM需特定平台调整。

    平台独立性如何降低发展成本和时间?平台独立性如何降低发展成本和时间?Apr 24, 2025 am 12:08 AM

    平台独立性通过在多种操作系统上运行同一套代码,降低开发成本和缩短开发时间。具体表现为:1.减少开发时间,只需维护一套代码;2.降低维护成本,统一测试流程;3.快速迭代和团队协作,简化部署过程。

    Java的平台独立性如何促进代码重用?Java的平台独立性如何促进代码重用?Apr 24, 2025 am 12:05 AM

    Java'splatformindependencefacilitatescodereusebyallowingbytecodetorunonanyplatformwithaJVM.1)Developerscanwritecodeonceforconsistentbehavioracrossplatforms.2)Maintenanceisreducedascodedoesn'tneedrewriting.3)Librariesandframeworkscanbesharedacrossproj

    您如何在Java应用程序中对平台特定问题进行故障排除?您如何在Java应用程序中对平台特定问题进行故障排除?Apr 24, 2025 am 12:04 AM

    要解决Java应用程序中的平台特定问题,可以采取以下步骤:1.使用Java的System类查看系统属性以了解运行环境。2.利用File类或java.nio.file包处理文件路径。3.根据操作系统条件加载本地库。4.使用VisualVM或JProfiler优化跨平台性能。5.通过Docker容器化确保测试环境与生产环境一致。6.利用GitHubActions在多个平台上进行自动化测试。这些方法有助于有效地解决Java应用程序中的平台特定问题。

    JVM中的类加载程序子系统如何促进平台独立性?JVM中的类加载程序子系统如何促进平台独立性?Apr 23, 2025 am 12:14 AM

    类加载器通过统一的类文件格式、动态加载、双亲委派模型和平台无关的字节码,确保Java程序在不同平台上的一致性和兼容性,实现平台独立性。

    Java编译器会产生特定于平台的代码吗?解释。Java编译器会产生特定于平台的代码吗?解释。Apr 23, 2025 am 12:09 AM

    Java编译器生成的代码是平台无关的,但最终执行的代码是平台特定的。1.Java源代码编译成平台无关的字节码。2.JVM将字节码转换为特定平台的机器码,确保跨平台运行但性能可能不同。

    JVM如何处理不同操作系统的多线程?JVM如何处理不同操作系统的多线程?Apr 23, 2025 am 12:07 AM

    多线程在现代编程中重要,因为它能提高程序的响应性和资源利用率,并处理复杂的并发任务。JVM通过线程映射、调度机制和同步锁机制,在不同操作系统上确保多线程的一致性和高效性。

    See all articles

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    Video Face Swap

    Video Face Swap

    使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

    热工具

    SublimeText3汉化版

    SublimeText3汉化版

    中文版,非常好用

    SublimeText3 英文版

    SublimeText3 英文版

    推荐:为Win版本,支持代码提示!

    SublimeText3 Linux新版

    SublimeText3 Linux新版

    SublimeText3 Linux最新版

    WebStorm Mac版

    WebStorm Mac版

    好用的JavaScript开发工具

    mPDF

    mPDF

    mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),