首页 >数据库 >Redis >Redis命令使用实例分析

Redis命令使用实例分析

WBOY
WBOY转载
2023-05-30 15:46:52758浏览

问题原因

小编负责的应用是一个管理后台应用,权限管理使用 Shiro 框架,由于存在多个节点,需要使用分布式 Session,于是这里使用 Redis 存储 Session 信息。

由于 Shiro 并没有直接提供 Redis 存储 Session 组件,阿粉不得不使用 Github 一个开源组件 shiro-redis。

由于 Shiro 框架需要定期验证 Session 是否有效,于是 Shiro 底层将会调用  SessionDAO#getActiveSessions 获取所有的 Session 信息。

shiro-redis 正好继承 SessionDAO 这个接口,底层使用用keys 命令查找 Redis 所有存储的 Session key。

public Set<byte[]> keys(byte[] pattern){
    checkAndInit();
    Set<byte[]> keys = null;
    Jedis jedis = jedisPool.getResource();
    try{
        keys = jedis.keys(pattern);
    }finally{
        jedis.close();
    }
    return keys;
}

找到问题原因,解决办法就比较简单了,github 上查找到解决方案,升级一下 shiro-redis 到最新版本。

在这个版本,shiro-redis 采用 scan命令代替 keys,从而修复这个问题。

public Set<byte[]> keys(byte[] pattern) {
    Set<byte[]> keys = null;
    Jedis jedis = jedisPool.getResource();


    try{
        keys = new HashSet<byte[]>();
        ScanParams params = new ScanParams();
        params.count(count);
        params.match(pattern);
        byte[] cursor = ScanParams.SCAN_POINTER_START_BINARY;
        ScanResult<byte[]> scanResult;
        do{
            scanResult = jedis.scan(cursor,params);
            keys.addAll(scanResult.getResult());
            cursor = scanResult.getCursorAsBytes();
        }while(scanResult.getStringCursor().compareTo(ScanParams.SCAN_POINTER_START) > 0);
    }finally{
        jedis.close();
    }
    return keys;


}

虽然问题成功解决了,但是阿粉心里还是有点不解。

为什么keys 指令会导致其他命令执行变慢?

为什么Keys 指令查询会这么慢?

为什么Scan 指令就没有问题?

Redis 执行命令的原理

首先我们来看第一个问题,为什么keys 指令会导致其他命令执行变慢?

站在客户端的视角,执行一条命令分为三步:

  1. 发送命令

  2. 执行命令

  3. 返回结果

但是这仅仅客户端自己以为的过程,但是实际上同一时刻,可能存在很多客户端发送命令给 Redis ,而 Redis 我们都知道它采用的是单线程模型。

为了处理同一时刻所有的客户端的请求命令,Redis 内部采用了队列的方式,排队执行。

于是客户端执行一条命令实际需要四步:

  1. 发送命令

  2. 命令排队

  3. 执行命令

  4. 返回结果

由于 Redis 单线程执行命令,只能顺序从队列取出任务开始执行。

只要 3 这个过程执行命令速度过慢,队列其他任务不得不进行等待,这对外部客户端看来,Redis 好像就被阻塞一样,一直得不到响应。

所以使用 Redis 过程切勿执行需要长时间运行的指令,这样可能导致 Redis 阻塞,影响执行其他指令。

KEYS 原理

接下来开始回答第二个问题,为什么Keys 指令查询会这么慢?

回答这个问题之前,请大家回想一下 Redis 底层存储结构。

不太清楚朋友的也没关系,大家可以回看一下之前的文章「阿里面试官:HashMap 熟悉吧?好的,那就来聊聊 Redis 字典吧!」。

keys命令需要返回所有的符合给定模式 pattern 的  Redis 中键,为了实现这个目的,Redis 不得不遍历字典中 ht[0]哈希表底层数组,这个时间复杂度为 「O(N)」(N 为 Redis 中 key 所有的数量)。

即使 Redis 中的键数量很少,它仍然会有很快的执行速度。当Redis键的数量逐渐增多,达到百万、千万,甚至上亿级别时,它的执行速度会变得非常缓慢。

下面是阿粉本地做的一次实验,使用 lua 脚本往 Redis 中增加 10W 个 key,然后使用 keys 查询所有键,这个查询大概会阻塞十几秒的时间。

eval "for i=1,100000  do redis.call('set',i,i+1) end" 0

这里阿粉使用 Docker 部署 Redis,性能可能会稍差。

SCAN 原理

最后我们来看下第三个问题,为什么scan 指令就没有问题?

这是因为 scan命令采用一种黑科技-「基于游标的迭代器」

每次调用 scan 命令,Redis 都会向用户返回一个新的游标以及一定数量的 key。下次再想继续获取剩余的 key,需要将这个游标传入 scan 命令, 以此来延续之前的迭代过程。

简单来讲,scan 命令使用分页查询 redis 。

下面是一个 scan 命令的迭代过程示例:

scan 命令使用游标这种方式,巧妙将一次全量查询拆分成多次,降低查询复杂度。

虽然  scan 命令时间复杂度与 keys一样,都是 「O(N)」,但是由于 scan 命令只需要返回少量的 key,所以执行速度会很快。

最后,虽然scan 命令解决 keys不足,但是同时也引入其他一些缺陷:

  • 同一个元素可能会被返回多次,这就需要我们应用程序增加处理重复元素功能。

  • 在迭代过程中,有可能会返回正在增加到 Redis 的元素,或者正在被删除的元素,也有可能不会。

以上这些缺陷,在我们开发中需要考虑这种情况。

除了 scan以外,redis 还有其他几个用于增量迭代命令:

  • sscan:用于迭代当前数据库中的数据库键,用于解决 smembers可能产生阻塞问题

  • hscan命令用于迭代哈希键中的键值对,用于解决 hgetall 可能产生阻塞问题。

  • zscan:命令用于迭代有序集合中的元素(包括元素成员和元素分值),用于产生 zrange 可能产生阻塞问题。

以上是Redis命令使用实例分析的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:yisu.com。如有侵权,请联系admin@php.cn删除