搜索
首页数据库RedisRedis缓存空间怎么优化

Redis缓存空间怎么优化

May 27, 2023 pm 11:44 PM
redis

场景设定

1、我们需要将POJO存储到缓存中,该类定义如下

public class TestPOJO implements Serializable {
    private String testStatus;
    private String userPin;
    private String investor;
    private Date testQueryTime;
    private Date createTime;
    private String bizInfo;
    private Date otherTime;
    private BigDecimal userAmount;
    private BigDecimal userRate;
    private BigDecimal applyAmount;
    private String type;
    private String checkTime;
    private String preTestStatus;
    
    public Object[] toValueArray(){
        Object[] array = {testStatus, userPin, investor, testQueryTime,
                createTime, bizInfo, otherTime, userAmount,
                userRate, applyAmount, type, checkTime, preTestStatus};
        return array;
    }
    
    public CreditRecord fromValueArray(Object[] valueArray){         
        //具体的数据类型会丢失,需要做处理
    }
}

2、用下面的实例作为测试数据

TestPOJO pojo = new TestPOJO();
pojo.setApplyAmount(new BigDecimal("200.11"));
pojo.setBizInfo("XX");
pojo.setUserAmount(new BigDecimal("1000.00"));
pojo.setTestStatus("SUCCESS");
pojo.setCheckTime("2023-02-02");
pojo.setInvestor("ABCD");
pojo.setUserRate(new BigDecimal("0.002"));
pojo.setTestQueryTime(new Date());
pojo.setOtherTime(new Date());
pojo.setPreTestStatus("PROCESSING");
pojo.setUserPin("ABCDEFGHIJ");
pojo.setType("Y");

常规做法

System.out.println(JSON.toJSONString(pojo).length());

使用JSON直接序列化、打印 length=284**,**这种方式是最简单的方式,也是最常用的方式,具体数据如下:

{"applyAmount":200.11,"bizInfo":"XX","checkTime":"2023-02-02","investor":"ABCD","otherTime":"2023-04-10 17:45:17.717","preCheckStatus":"PROCESSING","testQueryTime":"2023-04-10 17:45:17.717","testStatus":"SUCCESS","type":"Y","userAmount":1000.00,"userPin":"ABCDEFGHIJ","userRate":0.002}

我们发现,以上包含了大量无用的数据,其中属性名是没有必要存储的。

改进1-去掉属性名

System.out.println(JSON.toJSONString(pojo.toValueArray()).length());

通过选择数组结构代替对象结构,去掉了属性名,打印 length=144,将数据大小降低了50%,具体数据如下:

["SUCCESS","ABCDEFGHIJ","ABCD","2023-04-10 17:45:17.717",null,"XX","2023-04-10 17:45:17.717",1000.00,0.002,200.11,"Y","2023-02-02","PROCESSING"]

我们发现,null是没有必要存储的,时间的格式被序列化为字符串,不合理的序列化结果,导致了数据的膨胀,所以我们应该选用更好的序列化工具。

改进2-使用更好的序列化工具

//我们仍然选取JSON格式,但使用了第三方序列化工具
System.out.println(new ObjectMapper(new MessagePackFactory()).writeValueAsBytes(pojo.toValueArray()).length);

选取更好的序列化工具,实现字段的压缩和合理的数据格式,打印 **length=92,**空间比上一步又降低了40%。

这是一份二进制数据,需要以二进制操作Redis,将二进制转为字符串后,打印如下:

��SUCCESS�ABCDEFGHIJ�ABCD��j�6���XX��j�6����?`bM����@i��Q�Y�2023-02-02�PROCESSING

顺着这个思路再深挖,我们发现,可以通过手动选择数据类型,实现更极致的优化效果,选择使用更小的数据类型,会获得进一步的提升。

改进3-优化数据类型

在以上用例中,testStatus、preCheckStatus、investor这3个字段,实际上是枚举字符串类型,如果能够使用更简单数据类型(比如byte或者int等)替代string,还可以进一步节省空间。可以使用Long类型代替字符串来表示checkTime,这样序列化工具输出的字节数会更少。

public Object[] toValueArray(){
    Object[] array = {toInt(testStatus), userPin, toInt(investor), testQueryTime,
    createTime, bizInfo, otherTime, userAmount,
    userRate, applyAmount, type, toLong(checkTime), toInt(preTestStatus)};
    return array;
}

在手动调整后,使用了更小的数据类型替代了String类型,打印 length=69

改进4-考虑ZIP压缩

除了以上的几点之外,还可以考虑使用ZIP压缩方式获取更小的体积,在内容较大或重复性较多的情况下,ZIP压缩的效果明显,如果存储的内容是TestPOJO的数组,可能适合使用ZIP压缩。

对于小于30个字节的文件,ZIP压缩可能增加文件大小,不一定能减少文件体积。在重复性内容较少的情况下,无法获得明显提升。并且存在CPU开销。

在经过以上优化之后,ZIP压缩不再是必选项,需要根据实际数据做测试才能分辨到ZIP的压缩效果。

最终落地

上面的几个改进步骤体现了优化的思路,但是反序列化的过程会导致类型的丢失,处理起来比较繁琐,所以我们还需要考虑反序列化的问题。

在缓存对象被预定义的情况下,我们完全可以手动处理每个字段,所以在实战中,推荐使用手动序列化达到上述目的,实现精细化的控制,达到最好的压缩效果和最小的性能开销。

可以参考以下msgpack的实现代码,以下为测试代码,请自行封装更好的Packer和UnPacker等工具:

<dependency>    
    <groupId>org.msgpack</groupId>    
    <artifactId>msgpack-core</artifactId>    
    <version>0.9.3</version>
</dependency>
    public byte[] toByteArray() throws Exception {
        MessageBufferPacker packer = MessagePack.newDefaultBufferPacker();
        toByteArray(packer);
        packer.close();
        return packer.toByteArray();
    }

    public void toByteArray(MessageBufferPacker packer) throws Exception {
        if (testStatus == null) {
            packer.packNil();
        }else{
            packer.packString(testStatus);
        }

        if (userPin == null) {
            packer.packNil();
        }else{
            packer.packString(userPin);
        }

        if (investor == null) {
            packer.packNil();
        }else{
            packer.packString(investor);
        }

        if (testQueryTime == null) {
            packer.packNil();
        }else{
            packer.packLong(testQueryTime.getTime());
        }

        if (createTime == null) {
            packer.packNil();
        }else{
            packer.packLong(createTime.getTime());
        }

        if (bizInfo == null) {
            packer.packNil();
        }else{
            packer.packString(bizInfo);
        }

        if (otherTime == null) {
            packer.packNil();
        }else{
            packer.packLong(otherTime.getTime());
        }

        if (userAmount == null) {
            packer.packNil();
        }else{
            packer.packString(userAmount.toString());
        }

        if (userRate == null) {
            packer.packNil();
        }else{
            packer.packString(userRate.toString());
        }

        if (applyAmount == null) {
            packer.packNil();
        }else{
            packer.packString(applyAmount.toString());
        }

        if (type == null) {
            packer.packNil();
        }else{
            packer.packString(type);
        }

        if (checkTime == null) {
            packer.packNil();
        }else{
            packer.packString(checkTime);
        }

        if (preTestStatus == null) {
            packer.packNil();
        }else{
            packer.packString(preTestStatus);
        }
    }


    public void fromByteArray(byte[] byteArray) throws Exception {
        MessageUnpacker unpacker = MessagePack.newDefaultUnpacker(byteArray);
        fromByteArray(unpacker);
        unpacker.close();
    }

    public void fromByteArray(MessageUnpacker unpacker) throws Exception {
        if (!unpacker.tryUnpackNil()){
            this.setTestStatus(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setUserPin(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setInvestor(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setTestQueryTime(new Date(unpacker.unpackLong()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setCreateTime(new Date(unpacker.unpackLong()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setBizInfo(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setOtherTime(new Date(unpacker.unpackLong()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setUserAmount(new BigDecimal(unpacker.unpackString()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setUserRate(new BigDecimal(unpacker.unpackString()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setApplyAmount(new BigDecimal(unpacker.unpackString()));
        }
        if (!unpacker.tryUnpackNil()){
            this.setType(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setCheckTime(unpacker.unpackString());
        }
        if (!unpacker.tryUnpackNil()){
            this.setPreTestStatus(unpacker.unpackString());
        }
    }

场景延伸

假设,我们为2亿用户存储数据,每个用户包含40个字段,字段key的长度是6个字节,字段是分别管理的。

正常情况下,我们会想到hash结构,而hash结构存储了key的信息,会占用额外资源,字段key属于不必要数据,按照上述思路,可以使用list替代hash结构。

通过Redis官方工具测试,使用list结构需要144G的空间,而使用hash结构需要245G的空间**(当50%以上的属性为空时,需要进行测试,是否仍然适用)**

Redis缓存空间怎么优化

在以上案例中,我们采取了几个非常简单的措施,仅仅有几行简单的代码,可降低空间70%以上,在数据量较大以及性能要求较高的场景中,是非常值得推荐的。:

• 使用数组替代对象(如果大量字段为空,需配合序列化工具对null进行压缩)

• 使用更好的序列化工具

• 使用更小的数据类型

• 考虑使用ZIP压缩

• 使用list替代hash结构(如果大量字段为空,需要进行测试对比)

以上是Redis缓存空间怎么优化的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
REDIS:探索其功能和功能REDIS:探索其功能和功能Apr 19, 2025 am 12:04 AM

Redis脱颖而出是因为其高速、多功能性和丰富的数据结构。1)Redis支持字符串、列表、集合、散列和有序集合等数据结构。2)它通过内存存储数据,支持RDB和AOF持久化。3)从Redis6.0开始引入多线程处理I/O操作,提升了高并发场景下的性能。

Redis是SQL还是NOSQL数据库?答案解释了Redis是SQL还是NOSQL数据库?答案解释了Apr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

REDIS:提高应用程序性能和可扩展性REDIS:提高应用程序性能和可扩展性Apr 17, 2025 am 12:16 AM

Redis通过缓存数据、实现分布式锁和数据持久化来提升应用性能和可扩展性。1)缓存数据:使用Redis缓存频繁访问的数据,提高数据访问速度。2)分布式锁:利用Redis实现分布式锁,确保在分布式环境中操作的安全性。3)数据持久化:通过RDB和AOF机制保证数据安全性,防止数据丢失。

REDIS:探索其数据模型和结构REDIS:探索其数据模型和结构Apr 16, 2025 am 12:09 AM

Redis的数据模型和结构包括五种主要类型:1.字符串(String):用于存储文本或二进制数据,支持原子操作。2.列表(List):有序元素集合,适合队列和堆栈。3.集合(Set):无序唯一元素集合,支持集合运算。4.有序集合(SortedSet):带分数的唯一元素集合,适用于排行榜。5.哈希表(Hash):键值对集合,适合存储对象。

REDIS:对其数据库方法进行分类REDIS:对其数据库方法进行分类Apr 15, 2025 am 12:06 AM

Redis的数据库方法包括内存数据库和键值存储。1)Redis将数据存储在内存中,读写速度快。2)它使用键值对存储数据,支持复杂数据结构,如列表、集合、哈希表和有序集合,适用于缓存和NoSQL数据库。

为什么要使用redis?利益和优势为什么要使用redis?利益和优势Apr 14, 2025 am 12:07 AM

Redis是一个强大的数据库解决方案,因为它提供了极速性能、丰富的数据结构、高可用性和扩展性、持久化能力以及广泛的生态系统支持。1)极速性能:Redis的数据存储在内存中,读写速度极快,适合高并发和低延迟应用。2)丰富的数据结构:支持多种数据类型,如列表、集合等,适用于多种场景。3)高可用性和扩展性:支持主从复制和集群模式,实现高可用性和水平扩展。4)持久化和数据安全:通过RDB和AOF两种方式实现数据持久化,确保数据的完整性和可靠性。5)广泛的生态系统和社区支持:拥有庞大的生态系统和活跃社区,

了解NOSQL:Redis的关键特征了解NOSQL:Redis的关键特征Apr 13, 2025 am 12:17 AM

Redis的关键特性包括速度、灵活性和丰富的数据结构支持。1)速度:Redis作为内存数据库,读写操作几乎瞬时,适用于缓存和会话管理。2)灵活性:支持多种数据结构,如字符串、列表、集合等,适用于复杂数据处理。3)数据结构支持:提供字符串、列表、集合、哈希表等,适合不同业务需求。

REDIS:确定其主要功能REDIS:确定其主要功能Apr 12, 2025 am 12:01 AM

Redis的核心功能是高性能的内存数据存储和处理系统。1)高速数据访问:Redis将数据存储在内存中,提供微秒级别的读写速度。2)丰富的数据结构:支持字符串、列表、集合等,适应多种应用场景。3)持久化:通过RDB和AOF方式将数据持久化到磁盘。4)发布订阅:可用于消息队列或实时通信系统。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境