首页  >  文章  >  数据库  >  怎么使用Go+Redis实现常见限流算法

怎么使用Go+Redis实现常见限流算法

PHPz
PHPz转载
2023-05-27 23:16:40880浏览

    固定窗口

    使用Redis实现固定窗口比较简单,主要是由于固定窗口同时只会存在一个窗口,所以我们可以在第一次进入窗口时使用pexpire命令设置过期时间为窗口时间大小,这样窗口会随过期时间而失效,同时我们使用incr命令增加窗口计数。

    因为我们需要在counter==1的时候设置窗口的过期时间,为了保证原子性,我们使用简单的Lua脚本实现。

    const fixedWindowLimiterTryAcquireRedisScript = `
    -- ARGV[1]: 窗口时间大小
    -- ARGV[2]: 窗口请求上限
    
    local window = tonumber(ARGV[1])
    local limit = tonumber(ARGV[2])
    
    -- 获取原始值
    local counter = tonumber(redis.call("get", KEYS[1]))
    if counter == nil then 
       counter = 0
    end
    -- 若到达窗口请求上限,请求失败
    if counter >= limit then
       return 0
    end
    -- 窗口值+1
    redis.call("incr", KEYS[1])
    if counter == 0 then
        redis.call("pexpire", KEYS[1], window)
    end
    return 1
    `
    package redis
    
    import (
       "context"
       "errors"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // FixedWindowLimiter 固定窗口限流器
    type FixedWindowLimiter struct {
       limit  int           // 窗口请求上限
       window int           // 窗口时间大小
       client *redis.Client // Redis客户端
       script *redis.Script // TryAcquire脚本
    }
    
    func NewFixedWindowLimiter(client *redis.Client, limit int, window time.Duration) (*FixedWindowLimiter, error) {
       // redis过期时间精度最大到毫秒,因此窗口必须能被毫秒整除
       if window%time.Millisecond != 0 {
          return nil, errors.New("the window uint must not be less than millisecond")
       }
    
       return &FixedWindowLimiter{
          limit:  limit,
          window: int(window / time.Millisecond),
          client: client,
          script: redis.NewScript(fixedWindowLimiterTryAcquireRedisScript),
       }, nil
    }
    
    func (l *FixedWindowLimiter) TryAcquire(ctx context.Context, resource string) error {
       success, err := l.script.Run(ctx, l.client, []string{resource}, l.window, l.limit).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }

    滑动窗口

    hash实现

    我们使用Redis的hash存储每个小窗口的计数,每次请求会把所有有效窗口的计数累加到count,使用hdel删除失效窗口,最后判断窗口的总计数是否大于上限。

    我们基本上把所有的逻辑都放到Lua脚本里面,其中大头是对hash的遍历,时间复杂度是O(N),N是小窗口数量,所以小窗口数量最好不要太多。

    const slidingWindowLimiterTryAcquireRedisScriptHashImpl = `
    -- ARGV[1]: 窗口时间大小
    -- ARGV[2]: 窗口请求上限
    -- ARGV[3]: 当前小窗口值
    -- ARGV[4]: 起始小窗口值
    
    local window = tonumber(ARGV[1])
    local limit = tonumber(ARGV[2])
    local currentSmallWindow = tonumber(ARGV[3])
    local startSmallWindow = tonumber(ARGV[4])
    
    -- 计算当前窗口的请求总数
    local counters = redis.call("hgetall", KEYS[1])
    local count = 0
    for i = 1, #(counters) / 2 do 
       local smallWindow = tonumber(counters[i * 2 - 1])
       local counter = tonumber(counters[i * 2])
       if smallWindow < startSmallWindow then
          redis.call("hdel", KEYS[1], smallWindow)
       else 
          count = count + counter
       end
    end
    
    -- 若到达窗口请求上限,请求失败
    if count >= limit then
       return 0
    end
    
    -- 若没到窗口请求上限,当前小窗口计数器+1,请求成功
    redis.call("hincrby", KEYS[1], currentSmallWindow, 1)
    redis.call("pexpire", KEYS[1], window)
    return 1
    `
    package redis
    
    import (
       "context"
       "errors"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // SlidingWindowLimiter 滑动窗口限流器
    type SlidingWindowLimiter struct {
       limit        int           // 窗口请求上限
       window       int64         // 窗口时间大小
       smallWindow  int64         // 小窗口时间大小
       smallWindows int64         // 小窗口数量
       client       *redis.Client // Redis客户端
       script       *redis.Script // TryAcquire脚本
    }
    
    func NewSlidingWindowLimiter(client *redis.Client, limit int, window, smallWindow time.Duration) (
       *SlidingWindowLimiter, error) {
       // redis过期时间精度最大到毫秒,因此窗口必须能被毫秒整除
       if window%time.Millisecond != 0 || smallWindow%time.Millisecond != 0 {
          return nil, errors.New("the window uint must not be less than millisecond")
       }
    
       // 窗口时间必须能够被小窗口时间整除
       if window%smallWindow != 0 {
          return nil, errors.New("window cannot be split by integers")
       }
    
       return &SlidingWindowLimiter{
          limit:        limit,
          window:       int64(window / time.Millisecond),
          smallWindow:  int64(smallWindow / time.Millisecond),
          smallWindows: int64(window / smallWindow),
          client:       client,
          script:       redis.NewScript(slidingWindowLimiterTryAcquireRedisScriptHashImpl),
       }, nil
    }
    
    func (l *SlidingWindowLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 获取当前小窗口值
       currentSmallWindow := time.Now().UnixMilli() / l.smallWindow * l.smallWindow
       // 获取起始小窗口值
       startSmallWindow := currentSmallWindow - l.smallWindow*(l.smallWindows-1)
    
       success, err := l.script.Run(
          ctx, l.client, []string{resource}, l.window, l.limit, currentSmallWindow, startSmallWindow).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }

    list实现

    如果小窗口数量特别多,可以使用list优化时间复杂度,list的结构是:

    [counter, smallWindow1, count1, smallWindow2, count2, smallWindow3, count3...]

    也就是我们使用list的第一个元素存储计数器,每个窗口用两个元素表示,第一个元素表示小窗口值,第二个元素表示这个小窗口的计数。由于Redis Lua脚本不支持字符串分割函数,因此不能将小窗口的值和计数放在同一元素中。

    具体操作流程:

    1.获取list长度

    2.如果长度是0,设置counter,长度+1

    3.如果长度大于1,获取第二第三个元素

    如果该值小于起始小窗口值,counter-第三个元素的值,删除第二第三个元素,长度-2

    4.如果counter大于等于limit,请求失败

    5.如果长度大于1,获取倒数第二第一个元素

    • 如果倒数第二个元素小窗口值大于等于当前小窗口值,表示当前请求因为网络延迟的问题,到达服务器的时候,窗口已经过时了,把倒数第二个元素当成当前小窗口(因为它更新),倒数第一个元素值+1

    • 否则,添加新的窗口值,添加新的计数(1),更新过期时间

    6.否则,添加新的窗口值,添加新的计数(1),更新过期时间

    7.counter + 1

    8.返回成功

    const slidingWindowLimiterTryAcquireRedisScriptListImpl = `
    -- ARGV[1]: 窗口时间大小
    -- ARGV[2]: 窗口请求上限
    -- ARGV[3]: 当前小窗口值
    -- ARGV[4]: 起始小窗口值
    
    local window = tonumber(ARGV[1])
    local limit = tonumber(ARGV[2])
    local currentSmallWindow = tonumber(ARGV[3])
    local startSmallWindow = tonumber(ARGV[4])
    
    -- 获取list长度
    local len = redis.call("llen", KEYS[1])
    -- 如果长度是0,设置counter,长度+1
    local counter = 0
    if len == 0 then 
       redis.call("rpush", KEYS[1], 0)
       redis.call("pexpire", KEYS[1], window)
       len = len + 1
    else
       -- 如果长度大于1,获取第二第个元素
       local smallWindow1 = tonumber(redis.call("lindex", KEYS[1], 1))
       counter = tonumber(redis.call("lindex", KEYS[1], 0))
       -- 如果该值小于起始小窗口值
       if smallWindow1 < startSmallWindow then 
          local count1 = redis.call("lindex", KEYS[1], 2)
          -- counter-第三个元素的值
          counter = counter - count1
          -- 长度-2
          len = len - 2
          -- 删除第二第三个元素
          redis.call("lrem", KEYS[1], 1, smallWindow1)
          redis.call("lrem", KEYS[1], 1, count1)
       end
    end
    
    -- 若到达窗口请求上限,请求失败
    if counter >= limit then 
       return 0
    end 
    
    -- 如果长度大于1,获取倒数第二第一个元素
    if len > 1 then
       local smallWindown = tonumber(redis.call("lindex", KEYS[1], -2))
       -- 如果倒数第二个元素小窗口值大于等于当前小窗口值
       if smallWindown >= currentSmallWindow then
          -- 把倒数第二个元素当成当前小窗口(因为它更新),倒数第一个元素值+1
          local countn = redis.call("lindex", KEYS[1], -1)
          redis.call("lset", KEYS[1], -1, countn + 1)
       else 
          -- 否则,添加新的窗口值,添加新的计数(1),更新过期时间
          redis.call("rpush", KEYS[1], currentSmallWindow, 1)
          redis.call("pexpire", KEYS[1], window)
       end
    else 
       -- 否则,添加新的窗口值,添加新的计数(1),更新过期时间
       redis.call("rpush", KEYS[1], currentSmallWindow, 1)
       redis.call("pexpire", KEYS[1], window)
    end 
    
    -- counter + 1并更新
    redis.call("lset", KEYS[1], 0, counter + 1)
    return 1
    `

    算法都是操作list头部或者尾部,所以时间复杂度接近O(1)

    漏桶算法

    漏桶需要保存当前水位和上次放水时间,因此我们使用hash来保存这两个值。

    const leakyBucketLimiterTryAcquireRedisScript = `
    -- ARGV[1]: 最高水位
    -- ARGV[2]: 水流速度/秒
    -- ARGV[3]: 当前时间(秒)
    
    local peakLevel = tonumber(ARGV[1])
    local currentVelocity = tonumber(ARGV[2])
    local now = tonumber(ARGV[3])
    
    local lastTime = tonumber(redis.call("hget", KEYS[1], "lastTime"))
    local currentLevel = tonumber(redis.call("hget", KEYS[1], "currentLevel"))
    -- 初始化
    if lastTime == nil then 
       lastTime = now
       currentLevel = 0
       redis.call("hmset", KEYS[1], "currentLevel", currentLevel, "lastTime", lastTime)
    end 
    
    -- 尝试放水
    -- 距离上次放水的时间
    local interval = now - lastTime
    if interval > 0 then
       -- 当前水位-距离上次放水的时间(秒)*水流速度
       local newLevel = currentLevel - interval * currentVelocity
       if newLevel < 0 then 
          newLevel = 0
       end 
       currentLevel = newLevel
       redis.call("hmset", KEYS[1], "currentLevel", newLevel, "lastTime", now)
    end
    
    -- 若到达最高水位,请求失败
    if currentLevel >= peakLevel then
       return 0
    end
    -- 若没有到达最高水位,当前水位+1,请求成功
    redis.call("hincrby", KEYS[1], "currentLevel", 1)
    redis.call("expire", KEYS[1], peakLevel / currentVelocity)
    return 1
    `
    package redis
    
    import (
       "context"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // LeakyBucketLimiter 漏桶限流器
    type LeakyBucketLimiter struct {
       peakLevel       int           // 最高水位
       currentVelocity int           // 水流速度/秒
       client          *redis.Client // Redis客户端
       script          *redis.Script // TryAcquire脚本
    }
    
    func NewLeakyBucketLimiter(client *redis.Client, peakLevel, currentVelocity int) *LeakyBucketLimiter {
       return &LeakyBucketLimiter{
          peakLevel:       peakLevel,
          currentVelocity: currentVelocity,
          client:          client,
          script:          redis.NewScript(leakyBucketLimiterTryAcquireRedisScript),
       }
    }
    
    func (l *LeakyBucketLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 当前时间
       now := time.Now().Unix()
       success, err := l.script.Run(ctx, l.client, []string{resource}, l.peakLevel, l.currentVelocity, now).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }

    令牌桶

    令牌桶可以看作是漏桶的相反算法,它们一个是把水倒进桶里,一个是从桶里获取令牌。

    const tokenBucketLimiterTryAcquireRedisScript = `
    -- ARGV[1]: 容量
    -- ARGV[2]: 发放令牌速率/秒
    -- ARGV[3]: 当前时间(秒)
    
    local capacity = tonumber(ARGV[1])
    local rate = tonumber(ARGV[2])
    local now = tonumber(ARGV[3])
    
    local lastTime = tonumber(redis.call("hget", KEYS[1], "lastTime"))
    local currentTokens = tonumber(redis.call("hget", KEYS[1], "currentTokens"))
    -- 初始化
    if lastTime == nil then 
       lastTime = now
       currentTokens = capacity
       redis.call("hmset", KEYS[1], "currentTokens", currentTokens, "lastTime", lastTime)
    end 
    
    -- 尝试发放令牌
    -- 距离上次发放令牌的时间
    local interval = now - lastTime
    if interval > 0 then
       -- 当前令牌数量+距离上次发放令牌的时间(秒)*发放令牌速率
       local newTokens = currentTokens + interval * rate
       if newTokens > capacity then 
          newTokens = capacity
       end 
       currentTokens = newTokens
       redis.call("hmset", KEYS[1], "currentTokens", newTokens, "lastTime", now)
    end
    
    -- 如果没有令牌,请求失败
    if currentTokens == 0 then
       return 0
    end
    -- 果有令牌,当前令牌-1,请求成功
    redis.call("hincrby", KEYS[1], "currentTokens", -1)
    redis.call("expire", KEYS[1], capacity / rate)
    return 1
    `
    package redis
    
    import (
       "context"
       "github.com/go-redis/redis/v8"
       "time"
    )
    
    // TokenBucketLimiter 令牌桶限流器
    type TokenBucketLimiter struct {
       capacity int           // 容量
       rate     int           // 发放令牌速率/秒
       client   *redis.Client // Redis客户端
       script   *redis.Script // TryAcquire脚本
    }
    
    func NewTokenBucketLimiter(client *redis.Client, capacity, rate int) *TokenBucketLimiter {
       return &TokenBucketLimiter{
          capacity: capacity,
          rate:     rate,
          client:   client,
          script:   redis.NewScript(tokenBucketLimiterTryAcquireRedisScript),
       }
    }
    
    func (l *TokenBucketLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 当前时间
       now := time.Now().Unix()
       success, err := l.script.Run(ctx, l.client, []string{resource}, l.capacity, l.rate, now).Bool()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if !success {
          return ErrAcquireFailed
       }
       return nil
    }

    滑动日志

    算法流程与滑动窗口相同,只是它可以指定多个策略,同时在请求失败的时候,需要通知调用方是被哪个策略所拦截。

    const slidingLogLimiterTryAcquireRedisScriptHashImpl = `
    -- ARGV[1]: 当前小窗口值
    -- ARGV[2]: 第一个策略的窗口时间大小
    -- ARGV[i * 2 + 1]: 每个策略的起始小窗口值
    -- ARGV[i * 2 + 2]: 每个策略的窗口请求上限
    
    local currentSmallWindow = tonumber(ARGV[1])
    -- 第一个策略的窗口时间大小
    local window = tonumber(ARGV[2])
    -- 第一个策略的起始小窗口值
    local startSmallWindow = tonumber(ARGV[3])
    local strategiesLen = #(ARGV) / 2 - 1
    
    -- 计算每个策略当前窗口的请求总数
    local counters = redis.call("hgetall", KEYS[1])
    local counts = {}
    -- 初始化counts
    for j = 1, strategiesLen do
       counts[j] = 0
    end
    
    for i = 1, #(counters) / 2 do 
       local smallWindow = tonumber(counters[i * 2 - 1])
       local counter = tonumber(counters[i * 2])
       if smallWindow < startSmallWindow then
          redis.call("hdel", KEYS[1], smallWindow)
       else 
          for j = 1, strategiesLen do
             if smallWindow >= tonumber(ARGV[j * 2 + 1]) then
                counts[j] = counts[j] + counter
             end
          end
       end
    end
    
    -- 若到达对应策略窗口请求上限,请求失败,返回违背的策略下标
    for i = 1, strategiesLen do
       if counts[i] >= tonumber(ARGV[i * 2 + 2]) then
          return i - 1
       end
    end
    
    -- 若没到窗口请求上限,当前小窗口计数器+1,请求成功
    redis.call("hincrby", KEYS[1], currentSmallWindow, 1)
    redis.call("pexpire", KEYS[1], window)
    return -1
    `
    package redis
    
    import (
       "context"
       "errors"
       "fmt"
       "github.com/go-redis/redis/v8"
       "sort"
       "time"
    )
    
    // ViolationStrategyError 违背策略错误
    type ViolationStrategyError struct {
       Limit  int           // 窗口请求上限
       Window time.Duration // 窗口时间大小
    }
    
    func (e *ViolationStrategyError) Error() string {
       return fmt.Sprintf("violation strategy that limit = %d and window = %d", e.Limit, e.Window)
    }
    
    // SlidingLogLimiterStrategy 滑动日志限流器的策略
    type SlidingLogLimiterStrategy struct {
       limit        int   // 窗口请求上限
       window       int64 // 窗口时间大小
       smallWindows int64 // 小窗口数量
    }
    
    func NewSlidingLogLimiterStrategy(limit int, window time.Duration) *SlidingLogLimiterStrategy {
       return &SlidingLogLimiterStrategy{
          limit:  limit,
          window: int64(window),
       }
    }
    
    // SlidingLogLimiter 滑动日志限流器
    type SlidingLogLimiter struct {
       strategies  []*SlidingLogLimiterStrategy // 滑动日志限流器策略列表
       smallWindow int64                        // 小窗口时间大小
       client      *redis.Client                // Redis客户端
       script      *redis.Script                // TryAcquire脚本
    }
    
    func NewSlidingLogLimiter(client *redis.Client, smallWindow time.Duration, strategies ...*SlidingLogLimiterStrategy) (
       *SlidingLogLimiter, error) {
       // 复制策略避免被修改
       strategies = append(make([]*SlidingLogLimiterStrategy, 0, len(strategies)), strategies...)
    
       // 不能不设置策略
       if len(strategies) == 0 {
          return nil, errors.New("must be set strategies")
       }
    
       // redis过期时间精度最大到毫秒,因此窗口必须能被毫秒整除
       if smallWindow%time.Millisecond != 0 {
          return nil, errors.New("the window uint must not be less than millisecond")
       }
       smallWindow = smallWindow / time.Millisecond
       for _, strategy := range strategies {
          if strategy.window%int64(time.Millisecond) != 0 {
             return nil, errors.New("the window uint must not be less than millisecond")
          }
          strategy.window = strategy.window / int64(time.Millisecond)
       }
    
       // 排序策略,窗口时间大的排前面,相同窗口上限大的排前面
       sort.Slice(strategies, func(i, j int) bool {
          a, b := strategies[i], strategies[j]
          if a.window == b.window {
             return a.limit > b.limit
          }
          return a.window > b.window
       })
    
       for i, strategy := range strategies {
          // 随着窗口时间变小,窗口上限也应该变小
          if i > 0 {
             if strategy.limit >= strategies[i-1].limit {
                return nil, errors.New("the smaller window should be the smaller limit")
             }
          }
          // 窗口时间必须能够被小窗口时间整除
          if strategy.window%int64(smallWindow) != 0 {
             return nil, errors.New("window cannot be split by integers")
          }
          strategy.smallWindows = strategy.window / int64(smallWindow)
       }
    
       return &SlidingLogLimiter{
          strategies:  strategies,
          smallWindow: int64(smallWindow),
          client:      client,
          script:      redis.NewScript(slidingLogLimiterTryAcquireRedisScriptHashImpl),
       }, nil
    }
    
    func (l *SlidingLogLimiter) TryAcquire(ctx context.Context, resource string) error {
       // 获取当前小窗口值
       currentSmallWindow := time.Now().UnixMilli() / l.smallWindow * l.smallWindow
       args := make([]interface{}, len(l.strategies)*2+2)
       args[0] = currentSmallWindow
       args[1] = l.strategies[0].window
       // 获取每个策略的起始小窗口值
       for i, strategy := range l.strategies {
          args[i*2+2] = currentSmallWindow - l.smallWindow*(strategy.smallWindows-1)
          args[i*2+3] = strategy.limit
       }
    
       index, err := l.script.Run(
          ctx, l.client, []string{resource}, args...).Int()
       if err != nil {
          return err
       }
       // 若到达窗口请求上限,请求失败
       if index != -1 {
          return &ViolationStrategyError{
             Limit:  l.strategies[index].limit,
             Window: time.Duration(l.strategies[index].window),
          }
       }
       return nil
    }

    以上是怎么使用Go+Redis实现常见限流算法的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明:
    本文转载于:yisu.com。如有侵权,请联系admin@php.cn删除