搜索
首页数据库RedisSpringBoot怎么整合Redis实现高并发数据缓存

什么是缓存

缓存是⼀个高速数据交换的存储器,使用它可以快速的访问和操作数据。

举个通俗的例子。

小明经营着一家饭店,在刚开张的时候由于名气不足,客源少,生意并不是很忙,平时没事的时候就闲着,有客人来了再进厨房安排做菜。随着饭店的日益发展,此时的饭店已经不同往日,有着大量的稳定客源,并且在某些节假日的时候甚至爆满。按照以前的做法,那肯定是行不通了,在用餐高峰期的时候因为备餐慢导致了客户的长时间等待,使得饭店的屡遭投诉。
为解决这一问题,小明想到了一个办法,可以在空闲的时候,提前将热门的菜做完后放入保温柜,等用餐高峰期时再拿出来加热后就可以直接上菜,就规避了短时间内大量客源而导致的备餐慢的问题,通过这一方法,即使在高峰期,也能很好的应对。

缓存的核心是将经常被访问的资源(高频读、低频写)预先存储在最接近用户且访问速度更快的位置,以提升访问速度。

为什么要用缓存

使用缓存后,效率会大大的提升,减少了不必要的资源消耗,提升了用户体验。

redis的特点:

  • redis支持数据的持久化,可以将内存中的数据保存在磁盘中,重启的时候可以再次加在进行使用。

  • redis不仅仅支持简单的key-value类型的数据,同时还提供list,set,zset,hash等数据结构的储存

  • redis支持数据的备份,即master-slave模式的数据备份

redis的优势:

  • 性能极高——redis能读得的速度是110000次/s,写的速度是81000次/s。

  • 丰富的数据类型——redis支持二进制案例的Strings, Lists, Hashes, Sets 及 Ordered Sets 数据类型操作。

  • 原子——redis的所有操作都是原子性的,意思就是要么成功执行要么失败完全不执行。单个操作是原子性的。多个操作也支持事务,即原子性,通过multi和exec指令包起来。

  • 丰富的特性redis还支持publish/subscribe,通知,key过期等等特性

Redis为什么这么快

(1)完全基于内存,数据存在内存中,绝大部分请求是纯粹的内存操作,非常快速,跟传统的磁盘文件数据存储相比,避免了通过磁盘IO读取到内存这部分的开销。

(2)数据结构简单,对数据操作也简单。每个数据结构在Redis中都有专门设计的一种或多种数据结构来支持。Redis利用这些灵活的数据结构来增强其读写性能。

(3)采用单线程,省去了很多上下文切换的时间以及CPU消耗,不存在竞争条件,不用去考虑各种锁的问题,不存在加锁释放锁操作,也不会出现死锁而导致的性能消耗。

(4)使用基于IO多路复用机制的线程模型,可以处理并发的链接。

实现一个用户信息的缓存

数据库表结构:

CREATE TABLE `blade_user` (
  `id` bigint(20) NOT NULL COMMENT '主键',
  `tenant_id` varchar(12) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT '000000' COMMENT '租户ID',
  `code` varchar(12) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '用户编号',
  `user_type` int(11) DEFAULT NULL COMMENT '用户平台',
  `account` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '账号',
  `password` varchar(100) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '密码',
  `name` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '昵称',
  `real_name` varchar(10) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '真名',
  `avatar` varchar(500) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '头像',
  `email` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '邮箱',
  `phone` varchar(45) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '手机',
  `birthday` datetime DEFAULT NULL COMMENT '生日',
  `sex` int(11) DEFAULT NULL COMMENT '性别',
  `role_id` varchar(1000) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '角色id',
  `dept_id` varchar(1000) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '部门id',
  `post_id` varchar(1000) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL COMMENT '岗位id',
  `create_user` bigint(20) DEFAULT NULL COMMENT '创建人',
  `create_dept` bigint(20) DEFAULT NULL COMMENT '创建部门',
  `create_time` datetime DEFAULT NULL COMMENT '创建时间',
  `update_user` bigint(20) DEFAULT NULL COMMENT '修改人',
  `update_time` datetime DEFAULT NULL COMMENT '修改时间',
  `status` int(11) DEFAULT NULL COMMENT '状态',
  `is_deleted` int(11) DEFAULT '0' COMMENT '是否已删除',
  PRIMARY KEY (`id`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci ROW_FORMAT=DYNAMIC COMMENT='用户表';

方式一:利用RedisTemplate实现 导入依赖

完整pom.xml文件:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <parent>
        <groupId>org.springframework.boot</groupId>
        <artifactId>spring-boot-starter-parent</artifactId>
        <version>2.7.8</version>
        <relativePath/> <!-- lookup parent from repository -->
    </parent>
    <groupId>com.redis.demo</groupId>
    <artifactId>springboot-redis</artifactId>
    <version>0.0.1-SNAPSHOT</version>
    <name>springboot-redis</name>
    <description>Demo project for Spring Boot</description>
    <properties>
        <java.version>1.8</java.version>
    </properties>
    <dependencies>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>


        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>

        <!--mybatis-plus的springboot支持-->
        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>3.4.2</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-data-redis</artifactId>
        </dependency>

        <!--mysql驱动-->
        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.15</version>
        </dependency>

       <!-- hutool 工具包,各种封装功能 一应俱全-->
        <dependency>
            <groupId>cn.hutool</groupId>
            <artifactId>hutool-all</artifactId>
            <version>5.8.5</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.41</version>
        </dependency>

        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-cache</artifactId>
        </dependency>

    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
                <configuration>
                    <excludes>
                        <exclude>
                            <groupId>org.projectlombok</groupId>
                            <artifactId>lombok</artifactId>
                        </exclude>
                    </excludes>
                </configuration>
            </plugin>
        </plugins>
    </build>

</project>
添加配置

application.yml文件:

server:
  port: 8081

spring:
  datasource:
    driver-class-name: com.mysql.cj.jdbc.Driver
    url: jdbc:mysql://3.129.36.183:3306/test?serverTimezone=GMT%2B8&useUnicode=true&characterEncoding=UTF-8
    username: root
    password: root
  #redis
  redis:
    host: 3.129.36.183
    #Redis服务器连接端口
    port: 6379
    #Redis服务器连接密码
    password: 123456

mybatis-plus:
  configuration:
    log-impl: org.apache.ibatis.logging.stdout.StdOutImpl #开启sql日志
    # 将带有下划线的表字段映射为驼峰格式的实体类属性
    map-underscore-to-camel-case: true
  #配置类型别名所对应的包
  type-aliases-package: com.redis.demo.entity
  #配置SQL输出语句com.winsun.dataclean.mapper
  mapper-locations: com/redis/demo/dao/*.xml
添加redis工具类及配置类

RedisUtils:

package com.redis.demo.utils;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;

import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;

/**
 * Redis工具类
 *
 * @author
 */
@Component
public class RedisUtils {


    @Autowired
    private RedisTemplate redisTemplate;

    // =============================common============================

    /**
     * 指定缓存失效时间
     *
     * @param key  键
     * @param time 时间(秒)
     * @return
     */
    public boolean expire(String key, long time) {
        try {
            if (time > 0) {
                redisTemplate.expire(key, time, TimeUnit.SECONDS);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 根据key 获取过期时间
     *
     * @param key 键 不能为null
     * @return 时间(秒) 返回0代表为永久有效
     */
    public long getExpire(String key) {
        return redisTemplate.getExpire(key, TimeUnit.SECONDS);
    }

    /**
     * 判断key是否存在
     *
     * @param key 键
     * @return true 存在 false不存在
     */
    public boolean hasKey(String key) {
        try {
            return redisTemplate.hasKey(key);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 删除缓存
     *
     * @param key 可以传一个值 或多个
     */
    @SuppressWarnings("unchecked")
    public void del(String... key) {
        if (key != null && key.length > 0) {
            if (key.length == 1) {
                redisTemplate.delete(key[0]);
            } else {
                redisTemplate.delete(CollectionUtils.arrayToList(key));
            }
        }
    }

    // ============================String=============================

    /**
     * 普通缓存获取
     *
     * @param key 键
     * @return 值
     */
    public Object get(String key) {
        return key == null ? null : redisTemplate.opsForValue().get(key);
    }

    /**
     * 普通缓存放入
     *
     * @param key   键
     * @param value 值
     * @return true成功 false失败
     */
    public boolean set(String key, Object value) {
        try {
            redisTemplate.opsForValue().set(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 普通缓存放入并设置时间
     *
     * @param key   键
     * @param value 值
     * @param time  时间(秒) time要大于0 如果time小于等于0 将设置无限期
     * @return true成功 false 失败
     */
    public boolean set(String key, Object value, long time) {
        try {
            if (time > 0) {
                redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
            } else {
                set(key, value);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 递增
     *
     * @param key   键
     * @param delta 要增加几(大于0)
     * @return
     */
    public long incr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递增因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, delta);
    }

    /**
     * 递减
     *
     * @param key   键
     * @param delta 要减少几(小于0)
     * @return
     */
    public long decr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递减因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, -delta);
    }

    // ================================Map=================================

    /**
     * HashGet
     *
     * @param key  键 不能为null
     * @param item 项 不能为null
     * @return 值
     */
    public Object hget(String key, String item) {
        return redisTemplate.opsForHash().get(key, item);
    }

    /**
     * 获取hashKey对应的所有键值
     *
     * @param key 键
     * @return 对应的多个键值
     */
    public Map<Object, Object> hmget(String key) {
        return redisTemplate.opsForHash().entries(key);
    }

    /**
     * HashSet
     *
     * @param key 键
     * @param map 对应多个键值
     * @return true 成功 false 失败
     */
    public boolean hmset(String key, Map<String, Object> map) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * HashSet 并设置时间
     *
     * @param key  键
     * @param map  对应多个键值
     * @param time 时间(秒)
     * @return true成功 false失败
     */
    public boolean hmset(String key, Map<String, Object> map, long time) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 向一张hash表中放入数据,如果不存在将创建
     *
     * @param key   键
     * @param item  项
     * @param value 值
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 向一张hash表中放入数据,如果不存在将创建
     *
     * @param key   键
     * @param item  项
     * @param value 值
     * @param time  时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value, long time) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 删除hash表中的值
     *
     * @param key  键 不能为null
     * @param item 项 可以使多个 不能为null
     */
    public void hdel(String key, Object... item) {
        redisTemplate.opsForHash().delete(key, item);
    }

    /**
     * 判断hash表中是否有该项的值
     *
     * @param key  键 不能为null
     * @param item 项 不能为null
     * @return true 存在 false不存在
     */
    public boolean hHasKey(String key, String item) {
        return redisTemplate.opsForHash().hasKey(key, item);
    }

    /**
     * hash递增 如果不存在,就会创建一个 并把新增后的值返回
     *
     * @param key  键
     * @param item 项
     * @param by   要增加几(大于0)
     * @return
     */
    public double hincr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, by);
    }

    /**
     * hash递减
     *
     * @param key  键
     * @param item 项
     * @param by   要减少记(小于0)
     * @return
     */
    public double hdecr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, -by);
    }

    // ============================set=============================

    /**
     * 根据key获取Set中的所有值
     *
     * @param key 键
     * @return
     */
    public Set<Object> sGet(String key) {
        try {
            return redisTemplate.opsForSet().members(key);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    /**
     * 根据value从一个set中查询,是否存在
     *
     * @param key   键
     * @param value 值
     * @return true 存在 false不存在
     */
    public boolean sHasKey(String key, Object value) {
        try {
            return redisTemplate.opsForSet().isMember(key, value);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 将数据放入set缓存
     *
     * @param key    键
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSet(String key, Object... values) {
        try {
            return redisTemplate.opsForSet().add(key, values);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    /**
     * 将set数据放入缓存
     *
     * @param key    键
     * @param time   时间(秒)
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSetAndTime(String key, long time, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().add(key, values);
            if (time > 0)
                expire(key, time);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    /**
     * 获取set缓存的长度
     *
     * @param key 键
     * @return
     */
    public long sGetSetSize(String key) {
        try {
            return redisTemplate.opsForSet().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    /**
     * 移除值为value的
     *
     * @param key    键
     * @param values 值 可以是多个
     * @return 移除的个数
     */
    public long setRemove(String key, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().remove(key, values);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    // ===============================list=================================

    /**
     * 获取list缓存的内容
     *
     * @param key   键
     * @param start 开始
     * @param end   结束 0 到 -1代表所有值
     * @return
     */
    public List<Object> lGet(String key, long start, long end) {
        try {
            return redisTemplate.opsForList().range(key, start, end);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    /**
     * 获取list缓存的长度
     *
     * @param key 键
     * @return
     */
    public long lGetListSize(String key) {
        try {
            return redisTemplate.opsForList().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    /**
     * 通过索引 获取list中的值
     *
     * @param key   键
     * @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
     * @return
     */
    public Object lGetIndex(String key, long index) {
        try {
            return redisTemplate.opsForList().index(key, index);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }

    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @return
     */
    public boolean lSet(String key, Object value) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @param time  时间(秒)
     * @return
     */
    public boolean lSet(String key, Object value, long time) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            if (time > 0)
                expire(key, time);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @return
     */
    public boolean lSet(String key, List<Object> value) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @param time  时间(秒)
     * @return
     */
    public boolean lSet(String key, List<Object> value, long time) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            if (time > 0)
                expire(key, time);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 根据索引修改list中的某条数据
     *
     * @param key   键
     * @param index 索引
     * @param value 值
     * @return
     */
    public boolean lUpdateIndex(String key, long index, Object value) {
        try {
            redisTemplate.opsForList().set(key, index, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 移除N个值为value
     *
     * @param key   键
     * @param count 移除多少个
     * @param value 值
     * @return 移除的个数
     */
    public long lRemove(String key, long count, Object value) {
        try {
            Long remove = redisTemplate.opsForList().remove(key, count, value);
            return remove;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
}

RedisConfig:

package com.redis.demo.config;

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.redis.demo.utils.MapUtil;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cache.interceptor.KeyGenerator;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;

import javax.annotation.PostConstruct;
import java.util.Map;

/**
 * @Author: laz
 * @CreateTime: 2023-02-20  11:55
 * @Version: 1.0
 *
 * 序列化
 */
@Configuration
public class RedisConfig {


    @Autowired
    private RedisTemplate redisTemplate;

    @PostConstruct
    public void init() {
        initRedisTemplate();
    }

    private void initRedisTemplate() {
        RedisSerializer stringSerializer = redisTemplate.getStringSerializer();
        redisTemplate.setKeySerializer(stringSerializer);
        redisTemplate.setHashKeySerializer(stringSerializer);
        redisTemplate.setValueSerializer(stringSerializer);
        redisTemplate.setHashValueSerializer(stringSerializer);
    }
}

开发mapper接口

package com.redis.demo.dao;


import com.baomidou.mybatisplus.core.mapper.BaseMapper;
import com.redis.demo.entity.BladeUser;

/**
 * <p>
 * 用户表 Mapper 接口
 * </p>
 *
 * @author laz
 * @since 2023-03-09
 */
public interface BladeUserMapper extends BaseMapper<BladeUser> {

}
service层

IBladeUserService:

package com.redis.demo.service;
import com.baomidou.mybatisplus.extension.service.IService;
import com.redis.demo.entity.BladeUser;
import com.redis.demo.result.DealResult;

/**
 * <p>
 * 用户表 服务类
 * </p>
 *
 * @author laz
 * @since 2023-03-09
 */
public interface IBladeUserService extends IService<BladeUser> {



    DealResult getById(Long id);
}

BladeUserServiceImpl:

package com.redis.demo.service.impl;

import cn.hutool.core.bean.BeanUtil;
import cn.hutool.json.JSONUtil;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.redis.demo.constant.RedisConstants;
import com.redis.demo.dao.BladeUserMapper;
import com.redis.demo.entity.BladeUser;
import com.redis.demo.result.DealResult;
import com.redis.demo.service.IBladeUserService;
import com.redis.demo.status.CacheNameStatus;
import com.redis.demo.utils.RedisUtils;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cache.annotation.Cacheable;
import org.springframework.stereotype.Service;
import org.springframework.util.ObjectUtils;

/**
 * <p>
 * 用户表 服务实现类
 * </p>
 *
 * @author laz
 * @since 2023-03-09
 */
@Service
public class BladeUserServiceImpl extends ServiceImpl<BladeUserMapper, BladeUser> implements IBladeUserService {


    @Autowired
    private  RedisUtils redisUtils;

    @Override
    public DealResult getById(Long id) {

        String userKey = RedisConstants.CACHE_USER_KEY+id;
        Object user = redisUtils.get(userKey);
        if (!ObjectUtils.isEmpty(user)){

            return DealResult.data(JSONUtil.toBean(JSONUtil.toJsonStr(user),BladeUser.class));
        }

        BladeUser bladeUser = baseMapper.selectById(id);
        redisUtils.set(userKey, JSON.toJSONString(bladeUser));
        return DealResult.data(bladeUser);
    }

}
controller层
package com.redis.demo.controller;
import com.redis.demo.result.DealResult;
import com.redis.demo.service.IBladeUserService;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RestController;

/**
 * <p>
 * 用户表 前端控制器
 * </p>
 *
 * @author laz
 * @since 2023-03-09
 */
@RestController
@RequestMapping("/bladeUser")
public class BladeUserController {

    @Autowired
    private IBladeUserService bladeUserService;

    @RequestMapping("getById/{id}")
    public DealResult getById(@PathVariable("id")Long id){
        return bladeUserService.getById(id);
    }

}
测试

启动项目,使用postman访问该接口,连续请求两次,观察响应时长:

第一次:

SpringBoot怎么整合Redis实现高并发数据缓存

第二次:

SpringBoot怎么整合Redis实现高并发数据缓存

可以看到,第一次3.34s,第二次43ms,效率明显提高!

方式二:采用SpringBoot注解开启缓存

以方式一为准

在启动类添加@EnableCaching注解

SpringBoot怎么整合Redis实现高并发数据缓存

修改service层实现类代码
package com.redis.demo.service.impl;

import cn.hutool.core.bean.BeanUtil;
import cn.hutool.json.JSONUtil;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.redis.demo.constant.RedisConstants;
import com.redis.demo.dao.BladeUserMapper;
import com.redis.demo.entity.BladeUser;
import com.redis.demo.result.DealResult;
import com.redis.demo.service.IBladeUserService;
import com.redis.demo.status.CacheNameStatus;
import com.redis.demo.utils.RedisUtils;
import lombok.AllArgsConstructor;
import org.springframework.beans.BeanUtils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.cache.annotation.Cacheable;
import org.springframework.stereotype.Service;
import org.springframework.util.ObjectUtils;

/**
 * <p>
 * 用户表 服务实现类
 * </p>
 *
 * @author laz
 * @since 2023-03-09
 */
@Service
public class BladeUserServiceImpl extends ServiceImpl<BladeUserMapper, BladeUser> implements IBladeUserService {
    @Autowired
    private  RedisUtils redisUtils;

//    @Override
//    public DealResult getById(Long id) {
//
//        String userKey = RedisConstants.CACHE_USER_KEY+id;
//        Object user = redisUtils.get(userKey);
//        if (!ObjectUtils.isEmpty(user)){
//
//            return DealResult.data(JSONUtil.toBean(JSONUtil.toJsonStr(user),BladeUser.class));
//        }
//
//        BladeUser bladeUser = baseMapper.selectById(id);
//        redisUtils.set(userKey, JSON.toJSONString(bladeUser));
//        return DealResult.data(bladeUser);
//    }

    @Cacheable(cacheNames = CacheNameStatus.BLADE_USER,keyGenerator = CacheNameStatus.KEY_GENERATOR)
    @Override
    public DealResult getById(Long id) {
        BladeUser bladeUser = baseMapper.selectById(id);
        return DealResult.data(bladeUser);
    }
}
修改RedisConfig配置类

在配置类中添加自定义KeyGenerator

  /**
     * 自定义KeyGenerator
     * @return
     */
    @Bean
    public KeyGenerator simpleKeyGenerator() {
        return (o, method, objects) -> {
            StringBuilder stringBuilder = new StringBuilder();
            stringBuilder.append(o.getClass().getSimpleName());
            stringBuilder.append(".");
            stringBuilder.append(method.getName());
            stringBuilder.append("[");
            for (Object obj : objects) {
                if(obj.toString().indexOf("Vo@")!= -1)
                {
                    Map<String, Object> map = MapUtil.getAttrFromModel(obj);
                    stringBuilder.append("[");
                    for(String item:map.keySet())
                    {
                        stringBuilder.append(",");
                        stringBuilder.append(map.get(item));
                    }

                    stringBuilder.append(",");
                    stringBuilder.deleteCharAt(stringBuilder.length() - 1);

                    stringBuilder.append("]");

                }
                else {
                    stringBuilder.append(obj);
                    stringBuilder.append(",");
                }

            }

            stringBuilder.append("]");
            return stringBuilder.toString();
        };
    }

:关于 @Cacheable注解的参数,不懂的可以点击查看。

重启项目,再次访问以上接口,观察响应时间:

第一次:

SpringBoot怎么整合Redis实现高并发数据缓存

第二次:

SpringBoot怎么整合Redis实现高并发数据缓存

可以看到,第一次2.52s,第二次44ms,效率明显提高!

通过Redis可视化工具观察缓存数据:

SpringBoot怎么整合Redis实现高并发数据缓存

SpringBoot怎么整合Redis实现高并发数据缓存

通过观察缓存数据大小可知:方式一449字节,方式二976字节,如果从内存占用大小的角度考虑,博主认为使用RedisTemplate方式做缓存更合适,因为这种方式所占内存相对较少。

以上是SpringBoot怎么整合Redis实现高并发数据缓存的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Redis是SQL还是NOSQL数据库?答案解释了Redis是SQL还是NOSQL数据库?答案解释了Apr 18, 2025 am 12:11 AM

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

REDIS:提高应用程序性能和可扩展性REDIS:提高应用程序性能和可扩展性Apr 17, 2025 am 12:16 AM

Redis通过缓存数据、实现分布式锁和数据持久化来提升应用性能和可扩展性。1)缓存数据:使用Redis缓存频繁访问的数据,提高数据访问速度。2)分布式锁:利用Redis实现分布式锁,确保在分布式环境中操作的安全性。3)数据持久化:通过RDB和AOF机制保证数据安全性,防止数据丢失。

REDIS:探索其数据模型和结构REDIS:探索其数据模型和结构Apr 16, 2025 am 12:09 AM

Redis的数据模型和结构包括五种主要类型:1.字符串(String):用于存储文本或二进制数据,支持原子操作。2.列表(List):有序元素集合,适合队列和堆栈。3.集合(Set):无序唯一元素集合,支持集合运算。4.有序集合(SortedSet):带分数的唯一元素集合,适用于排行榜。5.哈希表(Hash):键值对集合,适合存储对象。

REDIS:对其数据库方法进行分类REDIS:对其数据库方法进行分类Apr 15, 2025 am 12:06 AM

Redis的数据库方法包括内存数据库和键值存储。1)Redis将数据存储在内存中,读写速度快。2)它使用键值对存储数据,支持复杂数据结构,如列表、集合、哈希表和有序集合,适用于缓存和NoSQL数据库。

为什么要使用redis?利益和优势为什么要使用redis?利益和优势Apr 14, 2025 am 12:07 AM

Redis是一个强大的数据库解决方案,因为它提供了极速性能、丰富的数据结构、高可用性和扩展性、持久化能力以及广泛的生态系统支持。1)极速性能:Redis的数据存储在内存中,读写速度极快,适合高并发和低延迟应用。2)丰富的数据结构:支持多种数据类型,如列表、集合等,适用于多种场景。3)高可用性和扩展性:支持主从复制和集群模式,实现高可用性和水平扩展。4)持久化和数据安全:通过RDB和AOF两种方式实现数据持久化,确保数据的完整性和可靠性。5)广泛的生态系统和社区支持:拥有庞大的生态系统和活跃社区,

了解NOSQL:Redis的关键特征了解NOSQL:Redis的关键特征Apr 13, 2025 am 12:17 AM

Redis的关键特性包括速度、灵活性和丰富的数据结构支持。1)速度:Redis作为内存数据库,读写操作几乎瞬时,适用于缓存和会话管理。2)灵活性:支持多种数据结构,如字符串、列表、集合等,适用于复杂数据处理。3)数据结构支持:提供字符串、列表、集合、哈希表等,适合不同业务需求。

REDIS:确定其主要功能REDIS:确定其主要功能Apr 12, 2025 am 12:01 AM

Redis的核心功能是高性能的内存数据存储和处理系统。1)高速数据访问:Redis将数据存储在内存中,提供微秒级别的读写速度。2)丰富的数据结构:支持字符串、列表、集合等,适应多种应用场景。3)持久化:通过RDB和AOF方式将数据持久化到磁盘。4)发布订阅:可用于消息队列或实时通信系统。

REDIS:流行数据结构指南REDIS:流行数据结构指南Apr 11, 2025 am 12:04 AM

Redis支持多种数据结构,具体包括:1.字符串(String),适合存储单一值数据;2.列表(List),适用于队列和栈;3.集合(Set),用于存储不重复数据;4.有序集合(SortedSet),适用于排行榜和优先级队列;5.哈希表(Hash),适合存储对象或结构化数据。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。