搜索
首页数据库mysql教程MySQL调优之SQL查询深度分页问题怎么解决

一、问题引入

例如当前存在一张表test_user,然后往这个表里面插入3百万的数据:

CREATE TABLE `test_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键id',
  `user_id` varchar(36) NOT NULL COMMENT '用户id',
  `user_name` varchar(30) NOT NULL COMMENT '用户名称',
  `phone` varchar(20) NOT NULL COMMENT '手机号码',
  `lan_id` int(9) NOT NULL COMMENT '本地网',
  `region_id` int(9) NOT NULL COMMENT '区域',
  `create_time` datetime NOT NULL COMMENT '创建时间',
  PRIMARY KEY (`id`),
  KEY `idx_user_id` (`user_id`)
) ENGINE=InnoDB AUTO_INCREMENT;

在数据库开发过程中我们经常会使用分页,核心技术是使用用 limit start, count 分页语句进行数据的读取。 

我们分别看下从0、10000、100000、500000、1000000、1800000开始分页的执行时长(每页取100条)。

SELECT * FROM test_user LIMIT 0,100;         # 0.031
SELECT * FROM test_user LIMIT 10000,100;     # 0.047
SELECT * FROM test_user LIMIT 100000,100;    # 0.109
SELECT * FROM test_user LIMIT 500000,100;    # 0.219
SELECT * FROM test_user LIMIT 1000000,100;   # 0.547s
SELECT * FROM test_user LIMIT 1800000,100;   # 1.625s

我们已经看出随着起始记录的增加,时间也随着增大。改变起始记录为290万后,我们可以看到分页语句中的limit和起始页码之间存在很大的关联

SELECT * FROM test_user LIMIT 2900000,100; # 3.062s

我们惊讶的发现MySQL在数据量大的情况下分页起点越大,查询速度越慢! 

那么为什么会出现上述这种情况呢?

答案: 因为 limit 2900000,100 的语法实际上是mysql扫描到前2900100条数据,之后丢弃前面的3000000行,这个步骤其实是浪费掉的。

从中我们也能总结出以下两件事情:

limit语句的查询时间与起始记录的位置成正比。

mysql的limit语句是很方便,但是对记录很多的表并不适合直接使用。

二、MySQL中的limit用法

limit子句可以被用于强制select语句返回指定的记录数,其语法格式如下:

SELECT * FROM 表名 limit m,n;
SELECT * FROM table LIMIT [offset,] rows;

limit接受一个或两个数字参数,参数必须是一个整数常量,如果给定两个参数:

第一个参数指定第一个返回记录行的偏移量
第二个参数指定返回记录行的最大数目

2.1 m代表从m+1条记录行开始检索,n代表取出n条数据。(m可设为0) 

SELECT * FROM 表名 limit 6,5;

上述SQL表示从第7条记录行开始算,取出5条数据 

2.2 值得注意的是,n可以被设置为-1,当n为-1时,表示从m+1行开始检索,直到取出最后一条数据

SELECT * FROM 表名 limit 6,-1;

上述SQL表示取出第6条记录行以后的所有数据

2.3 若只给出m,则表示从第1条记录行开始算一共取出m条

SELECT * FROM 表名 limit 6;

2.4 以年龄倒序后取出前3行

select * from student order by age desc limit 3;

2.5 跳过前3行后再2取行

select * from student order by age desc limit 3,2;

三、深度分页优化策略

方法一:用主键id或者唯一索引优化

即先找到上次分页的最大id,然后利用id上的索引来查询:

SELECT * FROM test_user WHERE id>1000000 LIMIT 100; # 0.047秒

使用此优化SQL相比于前面的查询速度已经快了11倍。除了使用主键ID,还可以运用唯一索引来快速定位特定数据,从而避免全表扫描。以下是相应的SQL优化代码,读取唯一键(pk)在1000至1019范围内的数据:

SELECT * FROM 表名称 WHERE pk>=1000 ORDER BY pk ASC LIMIT 0,20

原因:索引扫描,速度会很快。

适用场景:如果数据查询出来是按照pk或者id进行排序,并且全部数据没有缺失的话则可以这样优化,否则分页操作会漏数据。

方法二:利用索引覆盖优化

我们都知道,利用了索引查询的语句中如果只包含了那个索引列(也就是索引覆盖),那么这种情况会查询很快。

为什么索引覆盖查询会很快呢?

答案:因为利用索引查找有优化算法,且数据就在查询索引上面,不用再去找相关的数据地址了,这样节省了很多时间。当并发量较高时,Mysql还提供了与索引相关联的缓存,充分利用此缓存可以获得更佳的效果。

由于在我们的测试表test_user中,id字段是主键,因此默认包含了主键索引。现在让我们看看利用覆盖索引的查询效果如何。

这次我们查询第1000001到1000100行的数据(利用覆盖索引,只包含id列):

SELECT id FROM test_user LIMIT 1000000,100; # 0.843秒

从这个结果中发现查询速度比全表扫描速度还要慢(当然在重复执行这条SQL,多次查询之后速度还是变快了很多,几乎省了一半时间,这是由于缓存的原因), 接着使用explain命令来查看该SQL的执行计划,发现该SQL执行采用的普通索引 idx_user_id

EXPLAIN SELECT id FROM test_user LIMIT 1000000,100;

MySQL调优之SQL查询深度分页问题怎么解决

如果我们删除普通索引,则执行上述SQL时会使用主键索引。那如果不删除普通索引的话,针对这种情况,我们要让上述SQL走主键索引的话,则可以使用order by语句:

SELECT id FROM test_user ORDER BY id ASC LIMIT 1000000,100; # 0.250秒

那么如果我们也要查询所有列,有两种方法,一种是id>=的形式,另一种就是利用join。

第一种写法: 

SELECT * FROM test_user WHERE ID >= (SELECT id FROM test_user ORDER BY id ASC LIMIT 1000000,1) LIMIT 100;

上述SQL查询时间为0.281秒

第二种写法:

SELECT * FROM (SELECT id FROM test_user ORDER BY id ASC LIMIT 1000000,100) a LEFT JOIN test_user b ON a.id = b.id;

上述SQL查询时间为0.252秒 

方法三:基于索引再排序

其中pageNum表示页码,其取值从0开始;pageSize表示指的是每页多少条数据。

SELECT * FROM 表名称 WHERE id_pk > (pageNum*pageSize) ORDER BY id_pk ASC LIMIT pageSize;

适应场景:

  • 适用于数据量多的情况

  • 最好ORDER BY后的列对象是主键或唯一索引

  • id数据没有缺失,可以作为序号使用

  • 使用ORDER BY操作能利用索引被消除,但结果集是稳定的

原因:

  • 索引扫描,速度会很快

  • 但MySQL的排序操作,只有ASC没有DESC。在MySQL中,索引的存储顺序是升序ASC,没有降序DESC的索引。这就是为什么默认情况下,order by 是按照升序排序的原因

方法四:基于索引使用prepare

PREPARE预编译一个SQL语句,并为其分配一个名称 stmt_name,以便以后引用该语句,预编译好的语句用EXECUTE执行。 

PREPARE stmt_name FROM 'SELECT * FROM test_user WHERE id > ? ORDER BY id ASC LIMIT ?';
SET @a = 1000000;
SET @b = 100;
EXECUTE stmt_name USING @a, @b;;

MySQL调优之SQL查询深度分页问题怎么解决

上述SQL查询时间为0.047秒。 

对于定义好的PREPARE预编译语句,我们可以使用下述命令来释放该预编译语句:

DEALLOCATE PREPARE stmt_name;

原因:

  • 索引扫描,速度会很快.

  • prepare语句又比一般的查询语句快一点。

方法五:利用"子查询+索引"快速定位数据 

其中page表示页码,其取值从0开始;pagesize表示指的是每页多少条数据。 

SELECT * FROM your_table WHERE id <= (SELECT id FROM your_table ORDER BY id DESC LIMIT ($page-1)*$pagesize ORDER BY id DESC LIMIT $pagesize);

方法六:利用复合索引进行优化

假设数据表 collect ( id, title ,info ,vtype) 就这4个字段,其中id是主键自增,title用定长,info用text, vtype是tinyint,vtype是一个普通索引。

现在往里面填充数据,填充10万条记录,数据库表占用硬1.6G。

select id,title from collect limit 1000,10;

执行上述SQL速度很快,基本上0.01秒就OK。

select id,title from collect limit 90000,10;

然后再执行上述SQL,就发现非常慢,基本上平均8~9秒完成。

这个时候如果我们执行下述,我们会发现速度又变的很快,0.04秒就OK。

select id from collect order by id limit 90000,10;

那么这个现象的原因是什么?

答案:因为用了id主键做索引,  这里实现了索引覆盖,当然快。

所以如果想一起查询其它列的话,可以按照索引覆盖进行优化,具体如下:

select id,title from collect where id >= (select id from collect order by id limit 90000,1) limit 10;

再看下面的语句,带上where 条件:

select id from collect where vtype=1 order by id limit 90000,10;

可以发现这个速度上也是很慢的,用了8~9秒!

这里有一个疑惑:vtype 做了索引了啊?怎么会慢呢?

vtype做了索引是不错,如果直接对vtype进行过滤:

select id from collect where vtype=1 limit 1000,10;

可以看到速度还是很快的,基本上0.05秒,如果从9万开始,那就是0.05*90=4.5秒的速度了。

其实加了 order by id 就不走索引,这样做还是全表扫描,解决的办法是:复合索引

因此针对下述SQL深度分页优化时可以加一个search_index(vtype,id)复合索引:

select id from collect where vtype=1 order by id limit 90000,10;

综上: 

  • 在进行SQL查询深度分页优化时,如果对于有where条件,又想走索引用limit的,必须设计一个索引,将where放第一位,limit用到的主键放第二位,而且只能select 主键。

  • 最后根据查询出的主键走一级索引找到对应的数据。

  • 按这样的逻辑,百万级的limit 在0.0x秒就可以分完,完美解决了分页问题。

以上是MySQL调优之SQL查询深度分页问题怎么解决的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
MySQL索引基数如何影响查询性能?MySQL索引基数如何影响查询性能?Apr 14, 2025 am 12:18 AM

MySQL索引基数对查询性能有显着影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL:新用户的资源和教程MySQL:新用户的资源和教程Apr 14, 2025 am 12:16 AM

MySQL学习路径包括基础知识、核心概念、使用示例和优化技巧。1)了解表、行、列、SQL查询等基础概念。2)学习MySQL的定义、工作原理和优势。3)掌握基本CRUD操作和高级用法,如索引和存储过程。4)熟悉常见错误调试和性能优化建议,如合理使用索引和优化查询。通过这些步骤,你将全面掌握MySQL的使用和优化。

现实世界Mysql:示例和用例现实世界Mysql:示例和用例Apr 14, 2025 am 12:15 AM

MySQL在现实世界的应用包括基础数据库设计和复杂查询优化。1)基本用法:用于存储和管理用户数据,如插入、查询、更新和删除用户信息。2)高级用法:处理复杂业务逻辑,如电子商务平台的订单和库存管理。3)性能优化:通过合理使用索引、分区表和查询缓存来提升性能。

MySQL中的SQL命令:实践示例MySQL中的SQL命令:实践示例Apr 14, 2025 am 12:09 AM

MySQL中的SQL命令可以分为DDL、DML、DQL、DCL等类别,用于创建、修改、删除数据库和表,插入、更新、删除数据,以及执行复杂的查询操作。1.基本用法包括CREATETABLE创建表、INSERTINTO插入数据和SELECT查询数据。2.高级用法涉及JOIN进行表联接、子查询和GROUPBY进行数据聚合。3.常见错误如语法错误、数据类型不匹配和权限问题可以通过语法检查、数据类型转换和权限管理来调试。4.性能优化建议包括使用索引、避免全表扫描、优化JOIN操作和使用事务来保证数据一致性

InnoDB如何处理酸合规性?InnoDB如何处理酸合规性?Apr 14, 2025 am 12:03 AM

InnoDB通过undolog实现原子性,通过锁机制和MVCC实现一致性和隔离性,通过redolog实现持久性。1)原子性:使用undolog记录原始数据,确保事务可回滚。2)一致性:通过行级锁和MVCC确保数据一致。3)隔离性:支持多种隔离级别,默认使用REPEATABLEREAD。4)持久性:使用redolog记录修改,确保数据持久保存。

MySQL的位置:数据库和编程MySQL的位置:数据库和编程Apr 13, 2025 am 12:18 AM

MySQL在数据库和编程中的地位非常重要,它是一个开源的关系型数据库管理系统,广泛应用于各种应用场景。1)MySQL提供高效的数据存储、组织和检索功能,支持Web、移动和企业级系统。2)它使用客户端-服务器架构,支持多种存储引擎和索引优化。3)基本用法包括创建表和插入数据,高级用法涉及多表JOIN和复杂查询。4)常见问题如SQL语法错误和性能问题可以通过EXPLAIN命令和慢查询日志调试。5)性能优化方法包括合理使用索引、优化查询和使用缓存,最佳实践包括使用事务和PreparedStatemen

MySQL:从小型企业到大型企业MySQL:从小型企业到大型企业Apr 13, 2025 am 12:17 AM

MySQL适合小型和大型企业。1)小型企业可使用MySQL进行基本数据管理,如存储客户信息。2)大型企业可利用MySQL处理海量数据和复杂业务逻辑,优化查询性能和事务处理。

幻影是什么读取的,InnoDB如何阻止它们(下一个键锁定)?幻影是什么读取的,InnoDB如何阻止它们(下一个键锁定)?Apr 13, 2025 am 12:16 AM

InnoDB通过Next-KeyLocking机制有效防止幻读。1)Next-KeyLocking结合行锁和间隙锁,锁定记录及其间隙,防止新记录插入。2)在实际应用中,通过优化查询和调整隔离级别,可以减少锁竞争,提高并发性能。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境