搜索
首页数据库RedisGolang分布式应用之Redis怎么使用

Golang分布式应用之Redis怎么使用

May 26, 2023 pm 10:07 PM
redisgolang

    正文

    Redis作是一个高性能的内存数据库,常被应用于分布式系统中,除了作为分布式缓存或简单的内存数据库还有一些特殊的应用场景,本文结合Golang来编写对应的中间件。

    分布式锁

    单机系统中我们可以使用sync.Mutex来保护临界资源,在分布式系统中同样有这样的需求,当多个主机抢占同一个资源,需要加对应的“分布式锁”。

    在Redis中我们可以通过setnx命令来实现

    • 如果key不存在可以设置对应的值,设置成功则加锁成功,key不存在返回失败

    • 释放锁可以通过del实现。

    主要逻辑如下:

    type RedisLock struct {
    	client     *redis.Client
    	key        string
    	expiration time.Duration // 过期时间,防止宕机或者异常
    }
    func NewLock(client *redis.Client, key string, expiration time.Duration) *RedisLock {
    	return &RedisLock{
    		client:     client,
    		key:        key,
    		expiration: expiration,
    	}
    }
    // 加锁将成功会将调用者id保存到redis中
    func (l *RedisLock) Lock(id string) (bool, error) {
    	return l.client.SetNX(context.TODO(), l.key, id, l.expiration).Result()
    }
    const unLockScript = `
    if (redis.call("get", KEYS[1]) == KEYS[2]) then
    	redis.call("del", KEYS[1])
    	return true
    end
    return false
    `
    // 解锁通过lua脚本来保证原子性,只能解锁当前调用者加的锁
    func (l *RedisLock) UnLock(id string) error {
    	_, err := l.client.Eval(context.TODO(), unLockScript, []string{l.key, id}).Result()
    	if err != nil && err != redis.Nil {
    		return err
    	}
    	return nil
    }

    为了防止系统宕机或异常请求导致的死锁,需要添加一个额外的超时时间,该超时时间应设为最大估计运行时间的两倍。

    解锁时通过lua脚本来保证原子性,调用者只会解自己加的锁。避免由于超时造成的混乱,例如:进程A在时间t1获取了锁,但由于执行缓慢,在时间t2锁超时失效,进程B在t3获取了锁,这是如果进程A执行完去解锁会取消进程B的锁。

    运行测试

    func main() {
        client := redis.NewClient(&redis.Options{
    		Addr:     "localhost:6379",
    		Password: "123456",
    		DB:       0, // use default DB
    	})
    	lock := NewLock(client, "counter", 30*time.Second)
        counter := 0
    	worker := func(i int) {
    		for {
    			id := fmt.Sprintf("worker%d", i)
    			ok, err := lock.Lock(id)
    			log.Printf("worker %d attempt to obtain lock, ok: %v, err: %v", i, ok, err)
    			if !ok {
    				time.Sleep(100 * time.Millisecond)
    				continue
    			}
    			defer lock.UnLock(id)
    			counter++
    			log.Printf("worker %d, add counter %d", i, counter)
    			break
    		}
    	}
    	wg := sync.WaitGroup{}
    	for i := 1; i <= 5; i++ {
    		wg.Add(1)
    		id := i
    		go func() {
    			defer wg.Done()
    			worker(id)
    		}()
    	}
    	wg.Wait()
    }

    运行结果,可以看到与sync.Mutex使用效果类似

    2022/07/22 09:58:09 worker 5 attempt to obtain lock, ok: true, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:09 worker 5, add counter 1
    2022/07/22 09:58:09 worker 4 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:09 worker 1 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:09 worker 2 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:09 worker 3 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 1 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 2 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 4 attempt to obtain lock, ok: true, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 4, add counter 2
    2022/07/22 09:58:10 worker 1 attempt to obtain lock, ok: true, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 1, add counter 3
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 2 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 2 attempt to obtain lock, ok: true, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 2, add counter 4
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: false, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 3 attempt to obtain lock, ok: true, err: 2d77b2345c34a631c3d251f57ce68620
    2022/07/22 09:58:10 worker 3, add counter 5

    特别注意的是,在分布式Redis集群中,如果发生异常时(主节点宕机),可能会降低分布式锁的可用性,可以通过强一致性的组件etcd、ZooKeeper等实现。

    分布式过滤器

    假设要开发一个爬虫服务,爬取百万级的网页,怎么判断某一个网页是否爬取过,除了借助数据库和HashMap,我们可以借助布隆过滤器来做。相对于其他方法,布隆过滤器占用空间非常少,且插入和查询时间非常快。

    布隆过滤器用来判断某个元素是否在集合中,利用BitSet

    • 插入数据时将值进行多次Hash,将BitSet对应位置1

    • 查询时同样进行多次Hash对比所有位上是否为1,如是则存在。

    布隆过滤器有一定的误判率,不适合精确查询的场景。另外也不支持删除元素。通常适用于URL去重、垃圾邮件过滤、防止缓存击穿等场景中。

    在Redis中,我们可以使用自带的BitSet实现,同样也借助lua脚本的原子性来避免多次查询数据不一致。

    const (
    	// 插入数据,调用setbit设置对应位
    	setScript = `
    for _, offset in ipairs(ARGV) do
    	redis.call("setbit", KEYS[1], offset, 1)
    end
    `
    	// 查询数据,如果所有位都为1返回true
    	getScript = `
    for _, offset in ipairs(ARGV) do
    	if tonumber(redis.call("getbit", KEYS[1], offset)) == 0 then
    		return false
    	end
    end
    return true
    `
    )
    type BloomFilter struct {
    	client *redis.Client
    	key    string // 存在redis中的key
    	bits   uint // BitSet的大小
    	maps   uint // Hash的次数
    }
    func NewBloomFilter(client *redis.Client, key string, bits, maps uint) *BloomFilter {
    	client.Del(context.TODO(), key)
    	if maps == 0 {
    		maps = 14
    	}
    	return &BloomFilter{
    		key:    key,
    		client: client,
    		bits:   bits,
    		maps:   maps,
    	}
    }
    // 进行多次Hash, 得到位置列表
    func (f *BloomFilter) getLocations(data []byte) []uint {
    	locations := make([]uint, f.maps)
    	for i := 0; i < int(f.maps); i++ {
    		val := murmur3.Sum64(append(data, byte(i)))
    		locations[i] = uint(val) % f.bits
    	}
    	return locations
    }
    func (f *BloomFilter) Add(data []byte) error {
    	args := getArgs(f.getLocations(data))
    	_, err := f.client.Eval(context.TODO(), setScript, []string{f.key}, args).Result()
    	if err != nil && err != redis.Nil {
    		return err
    	}
    	return nil
    }
    func (f *BloomFilter) Exists(data []byte) (bool, error) {
    	args := getArgs(f.getLocations(data))
    	resp, err := f.client.Eval(context.TODO(), getScript, []string{f.key}, args).Result()
    	if err != nil {
    		if err == redis.Nil {
    			return false, nil
    		}
    		return false, err
    	}
    	exists, ok := resp.(int64)
    	if !ok {
    		return false, nil
    	}
    	return exists == 1, nil
    }
    func getArgs(locations []uint) []string {
    	args := make([]string, 0)
    	for _, l := range locations {
    		args = append(args, strconv.FormatUint(uint64(l), 10))
    	}
    	return args
    }

    运行测试

    func main() {
    	bf := NewBloomFilter(client,"bf-test", 2^16, 14)
    	exists, err := bf.Exists([]byte("test1"))
    	log.Printf("exist %t, err %v", exists, err)
    	if err := bf.Add([]byte("test1")); err != nil {
    		log.Printf("add err: %v", err)
    	}
    	exists, err = bf.Exists([]byte("test1"))
    	log.Printf("exist %t, err %v", exists, err)
    	exists, err = bf.Exists([]byte("test2"))
    	log.Printf("exist %t, err %v", exists, err)
    // output
    // 2022/07/22 10:05:58 exist false, err <nil>
    // 2022/07/22 10:05:58 exist true, err <nil>
    // 2022/07/22 10:05:58 exist false, err <nil>
    }

    分布式限流器

    golang.org/x/time/rate包中提供了基于令牌桶的限流器,如果要实现分布式环境的限流可以基于Redis Lua脚本实现。

    令牌桶的主要原理如下:

    • 假设一个令牌桶容量为burst,每秒按照qps的速率往里面放置令牌

    • 初始时放满令牌,令牌溢出则直接丢弃,请求令牌时,如果桶中有足够令牌则允许,否则拒绝

    • 当burst==qps时,严格按照qps限流;当burst>qps时,可以允许一定的突增流量

    这里主要参考了官方rate包的实现,将核心逻辑改为Lua实现。

    --- 相关Key
    --- limit rate key值,对应value为当前令牌数
    local limit_key = KEYS[1]
    --- 输入参数
    --[[
    qps: 每秒请求数;
    burst: 令牌桶容量;
    now: 当前Timestamp;
    cost: 请求令牌数;
    max_wait: 最大等待时间
    --]]
    local qps = tonumber(ARGV[1])
    local burst = tonumber(ARGV[2])
    local now = ARGV[3]
    local cost = tonumber(ARGV[4])
    local max_wait = tonumber(ARGV[5])
    --- 获取redis中的令牌数
    local tokens = redis.call("hget", limit_key, "token")
    if not tokens then
    	tokens = burst
    end
    --- 上次修改时间
    local last_time = redis.call("hget", limit_key, "last_time")
    if not last_time then
    	last_time = 0
    end
    --- 最新等待时间
    local last_event = redis.call("hget", limit_key, "last_event")
    if not last_event then
    	last_event = 0
    end
    --- 通过当前时间与上次修改时间的差值,qps计算出当前时间得令牌数
    local delta = math.max(0, now-last_time)
    local new_tokens = math.min(burst, delta * qps + tokens)
    new_tokens = new_tokens - cost --- 最新令牌数,减少请求令牌
    --- 如果最新令牌数小于0,计算需要等待的时间
    local wait_period = 0
    if new_tokens < 0 and qps > 0 then
    	wait_period = wait_period - new_tokens / qps
    end
    wait_period = math.ceil(wait_period)
    local time_act = now + wait_period --- 满足等待间隔的时间戳
    --- 允许请求有两种情况
    --- 当请求令牌数小于burst, 等待时间不超过最大等待时间,可以通过补充令牌满足请求
    --- qps为0时,只要最新令牌数不小于0即可
    local ok = (cost <= burst and wait_period <= max_wait and qps > 0) or (qps == 0 and new_tokens >= 0)
    --- 设置对应值
    if ok then
    	redis.call("set", limit_key, new_tokens)
    	redis.call("set", last_time_key, now)
    	redis.call("set", last_event_key, time_act)
    end
    --- 返回列表,{是否允许, 等待时间}
    return {ok, wait_period}

    在Golang中的相关接口Allow、AllowN、Wait等都是通过调用reserveN实现

    // 调用lua脚本
    func (lim *RedisLimiter) reserveN(now time.Time, n int, maxFutureReserveSecond int) (*Reservation, error) {
    	// ...
    	res, err := lim.rdb.Eval(context.TODO(), reserveNScript, []string{lim.limitKey}, lim.qps, lim.burst, now.Unix(), n, maxFutureReserveSecond).Result()
    	if err != nil && err != redis.Nil {
    		return nil, err
    	}
    	//...
    	return &Reservation{
    		ok:        allow == 1,
    		lim:       lim,
    		tokens:    n,
    		timeToAct: now.Add(time.Duration(wait) * time.Second),
    	}, nil
    }

    运行测试

    func main() {
    	rdb := redis.NewClient(&redis.Options{
    		Addr:     "localhost:6379",
    		Password: "123456",
    		DB:       0, // use default DB
    	})
    	r, err := NewRedisLimiter(rdb, 1, 2, "testrate")
    	if err != nil {
    		log.Fatal(err)
    	}
    	r.Reset()
    	for i := 0; i < 5; i++ {
    		err := r.Wait(context.TODO())
    		log.Printf("worker %d allowed: %v", i, err)
    	}
    }
    // output
    // 2022/07/22 12:50:31 worker 0 allowed: <nil>
    // 2022/07/22 12:50:31 worker 1 allowed: <nil>
    // 2022/07/22 12:50:32 worker 2 allowed: <nil>
    // 2022/07/22 12:50:33 worker 3 allowed: <nil>
    // 2022/07/22 12:50:34 worker 4 allowed: <nil>

    前两个请求在burst内,直接可以获得,后面的请求按照qps的速率生成。

    其他

    Redis还可用于全局计数、去重以及发布订阅等不同情境。参考Redis官方提供的模块,可以通过加载这些模块实现过滤、限流等特性。

    以上是Golang分布式应用之Redis怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明
    本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
    REDIS:它如何充当数据存储和服务REDIS:它如何充当数据存储和服务Apr 24, 2025 am 12:08 AM

    REDISACTSASBOTHADATASTOREANDASERVICE.1)ASADATASTORE,ITUSESIN-MEMORYSTOOGATOFORFOFFASTESITION,支持VariousDatharptructuresLikeKey-valuepairsandsortedsetsetsetsetsetsetsets.2)asaservice,ItprovidespunctionslikeItionitionslikepunikeLikePublikePublikePlikePlikePlikeAndluikeAndluAascriptingiationsmpleplepleclexplectiations

    REDIS与其他数据库:比较分析REDIS与其他数据库:比较分析Apr 23, 2025 am 12:16 AM

    Redis与其他数据库相比,具有以下独特优势:1)速度极快,读写操作通常在微秒级别;2)支持丰富的数据结构和操作;3)灵活的使用场景,如缓存、计数器和发布订阅。选择Redis还是其他数据库需根据具体需求和场景,Redis在高性能、低延迟应用中表现出色。

    REDIS的角色:探索数据存储和管理功能REDIS的角色:探索数据存储和管理功能Apr 22, 2025 am 12:10 AM

    Redis在数据存储和管理中扮演着关键角色,通过其多种数据结构和持久化机制成为现代应用的核心。1)Redis支持字符串、列表、集合、有序集合和哈希表等数据结构,适用于缓存和复杂业务逻辑。2)通过RDB和AOF两种持久化方式,Redis确保数据的可靠存储和快速恢复。

    REDIS:了解NOSQL概念REDIS:了解NOSQL概念Apr 21, 2025 am 12:04 AM

    Redis是一种NoSQL数据库,适用于大规模数据的高效存储和访问。1.Redis是开源的内存数据结构存储系统,支持多种数据结构。2.它提供极快的读写速度,适合缓存、会话管理等。3.Redis支持持久化,通过RDB和AOF方式确保数据安全。4.使用示例包括基本的键值对操作和高级的集合去重功能。5.常见错误包括连接问题、数据类型不匹配和内存溢出,需注意调试。6.性能优化建议包括选择合适的数据结构和设置内存淘汰策略。

    REDIS:现实世界的用例和示例REDIS:现实世界的用例和示例Apr 20, 2025 am 12:06 AM

    Redis在现实世界中的应用包括:1.作为缓存系统加速数据库查询,2.存储Web应用的会话数据,3.实现实时排行榜,4.作为消息队列简化消息传递。Redis的多功能性和高性能使其在这些场景中大放异彩。

    REDIS:探索其功能和功能REDIS:探索其功能和功能Apr 19, 2025 am 12:04 AM

    Redis脱颖而出是因为其高速、多功能性和丰富的数据结构。1)Redis支持字符串、列表、集合、散列和有序集合等数据结构。2)它通过内存存储数据,支持RDB和AOF持久化。3)从Redis6.0开始引入多线程处理I/O操作,提升了高并发场景下的性能。

    Redis是SQL还是NOSQL数据库?答案解释了Redis是SQL还是NOSQL数据库?答案解释了Apr 18, 2025 am 12:11 AM

    RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

    REDIS:提高应用程序性能和可扩展性REDIS:提高应用程序性能和可扩展性Apr 17, 2025 am 12:16 AM

    Redis通过缓存数据、实现分布式锁和数据持久化来提升应用性能和可扩展性。1)缓存数据:使用Redis缓存频繁访问的数据,提高数据访问速度。2)分布式锁:利用Redis实现分布式锁,确保在分布式环境中操作的安全性。3)数据持久化:通过RDB和AOF机制保证数据安全性,防止数据丢失。

    See all articles

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    Video Face Swap

    Video Face Swap

    使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

    热工具

    记事本++7.3.1

    记事本++7.3.1

    好用且免费的代码编辑器

    Atom编辑器mac版下载

    Atom编辑器mac版下载

    最流行的的开源编辑器

    MinGW - 适用于 Windows 的极简 GNU

    MinGW - 适用于 Windows 的极简 GNU

    这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

    禅工作室 13.0.1

    禅工作室 13.0.1

    功能强大的PHP集成开发环境

    WebStorm Mac版

    WebStorm Mac版

    好用的JavaScript开发工具