超卖简单代码
写一段简单正常的超卖逻辑代码,多个用户同时操作同一段数据,探究出现的问题。
Redis中存储一项数据信息,请求对应接口,获取商品数量信息;
商品数量信息如果大于0,则扣减1,重新存储Redis中;
运行代码测试问题。
/** * Redis数据库操作,超卖问题模拟 * @author * */ @RestController public class RedisController { // 引入String类型redis操作模板 @Autowired private StringRedisTemplate stringRedisTemplate; // 测试数据设置接口 @RequestMapping("/setStock") public String setStock() { stringRedisTemplate.opsForValue().set("stock", "100"); return "ok"; } // 模拟商品超卖代码 @RequestMapping("/deductStock") public String deductStock() { // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if(stock > 0) { int realStock = stock -1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:"+realStock); }else { System.out.println("库存不足....."); } return "end"; } }
超卖问题
单服务器单应用情况下
在单应用模式下,使用jmeter
压测。
测试结果:
每个请求相当于一个线程,当几个线程同时拿到数据时,线程A拿到库存为84,这个时候线程B也进入程序,并且抢占了CPU,访问库存为84,最后两个线程都对库存减一,导致最后修改为83,实际上多卖出去了一件
既然线程和线程之间,数据处理不一致,能否使用synchronized
加锁测试?
设置synchronized
依旧还是先测试单服务器
// 模拟商品超卖代码, // 设置synchronized同步锁 @RequestMapping("/deductStock1") public String deductStock1() { synchronized (this) { // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if(stock > 0) { int realStock = stock -1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:"+realStock); }else { System.out.println("库存不足....."); } } return "end"; }
数量100
重新压测,得到的日志信息如下所示:
在单机模式下,添加synchronized关键字,的确能够避免商品的超卖现象!
但是在分布式微服务中,针对该服务设置了集群,synchronized依旧还能保证数据的正确性吗?
假设多个请求,被注册中心负载均衡,每个微服务中的该处理接口,都添加有synchronized,
依然会出现类似的超卖
问题:
synchronized
只是针对单一服务器
的JVM
进行加锁
,但是分布式是很多个不同的服务器,导致两个线程或多个在不同服务器上共同对商品数量信息做了操作!
Redis实现分布式锁
在Redis中存在一条命令setnx (set if not exists)
setnx key value
如果不存在key,则可以设置成功;否则设置失败。
修改处理接口,增加key
// 模拟商品超卖代码 @RequestMapping("/deductStock2") public String deductStock2() { // 创建一个key,保存至redis String key = "lock"; // setnx // 由于redis是一个单线程,执行命令采取“队列”形式排队! // 优先进入队列的命令先执行,由于是setnx,第一个执行后,其他操作执行失败。 boolean result = stringRedisTemplate.opsForValue().setIfAbsent(key, "this is lock"); // 当不存在key时,可以设置成功,回执true;如果存在key,则无法设置,返回false if (!result) { // 前端监测,redis中存在,则不能让这个抢购操作执行,予以提示! return "err"; } // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if(stock > 0) { int realStock = stock -1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:"+realStock); }else { System.out.println("库存不足....."); } // 程序执行完成,则删除这个key stringRedisTemplate.delete(key); return "end"; }
1、请求进入接口中,如果redis中不存在key,则会新建一个setnx;如果存在,则不会新建,同时返回错误编码,不会继续执行抢购逻辑。
2、当创建成功后,执行抢购逻辑。
3、抢购逻辑执行完成后,删除数据库中对应的setnx
的key
。让其他请求能够设置并操作。
这种逻辑来说比之前单一使用syn
合理的多,但是如果执行抢购操作中出现了异常,导致这个key
无法被删除
。以至于其他处理请求,一直无法拿到key
,程序逻辑死锁!
可以采取try … finally进行操作
/** * 模拟商品超卖代码 设置 * * @return */ @RequestMapping("/deductStock3") public String deductStock3() { // 创建一个key,保存至redis String key = "lock"; // setnx // 由于redis是一个单线程,执行命令采取队列形式排队!优先进入队列的命令先执行,由于是setnx,第一个执行后,其他操作执行失败 boolean result = stringRedisTemplate.opsForValue().setIfAbsent(key, "this is lock"); // 当不存在key时,可以设置成功,回执true;如果存在key,则无法设置,返回false if (!result) { // 前端监测,redis中存在,则不能让这个抢购操作执行,予以提示! return "err"; } try { // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if (stock > 0) { int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:" + realStock); } else { System.out.println("库存不足....."); } } finally { // 程序执行完成,则删除这个key // 放置于finally中,保证即使上述逻辑出问题,也能del掉 stringRedisTemplate.delete(key); } return "end"; }
这个逻辑相比上面其他的逻辑来说,显得更加的严谨。
但是,如果一套服务器,因为断电、系统崩溃等原因出现宕机
,导致本该执行finally
中的语句未成功执行完成!!同样出现key一直存在
,导致死锁
!
通过超时间解决上述问题
在设置成功setnx
后,以及抢购代码逻辑执行前,增加key的限时。
/** * 模拟商品超卖代码 设置setnx保证分布式环境下,数据处理安全行问题;<br> * 但如果某个代码段执行异常,导致key无法清理,出现死锁,添加try...finally;<br> * 如果某个服务因某些问题导致释放key不能执行,导致死锁,此时解决思路为:增加key的有效时间;<br> * 为了保证设置key的值和设置key的有效时间,两条命令构成同一条原子命令,将下列逻辑换成其他代码。 * * @return */ @RequestMapping("/deductStock4") public String deductStock4() { // 创建一个key,保存至redis String key = "lock"; // setnx // 由于redis是一个单线程,执行命令采取队列形式排队!优先进入队列的命令先执行,由于是setnx,第一个执行后,其他操作执行失败 //boolean result = stringRedisTemplate.opsForValue().setIfAbsent(key, "this is lock"); //让设置key和设置key的有效时间都可以同时执行 boolean result = stringRedisTemplate.opsForValue().setIfAbsent(key, "this is lock", 10, TimeUnit.SECONDS); // 当不存在key时,可以设置成功,回执true;如果存在key,则无法设置,返回false if (!result) { // 前端监测,redis中存在,则不能让这个抢购操作执行,予以提示! return "err"; } // 设置key有效时间 //stringRedisTemplate.expire(key, 10, TimeUnit.SECONDS); try { // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if (stock > 0) { int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:" + realStock); } else { System.out.println("库存不足....."); } } finally { // 程序执行完成,则删除这个key // 放置于finally中,保证即使上述逻辑出问题,也能del掉 stringRedisTemplate.delete(key); } return "end"; }
但是上述代码的逻辑中依旧会有问题:
如果处理逻辑中,出现
超时
问题。
当逻辑执行时,时间超过设定key有效时间,此时会出现什么问题?
从上图可以清楚的发现问题:
如果一个请求执行时间超过了key的有效时间。
新的请求执行过来时,必然可以拿到key并设置时间;
此时的redis中保存的key并不是请求1的key,而是别的请求设置的。
当请求1执行完成后,此处删除key,删除的是别的请求设置的key!
依然出现了key形同虚设
的问题!如果失效一直存在,超卖问题依旧不会解决。
通过key设置值匹配的方式解决形同虚设问题
既然出现key形同虚设的现象,是否可以增加条件,当finally中需要执行删除操作时,获取数据判断值是否是该请求中对应的,如果是则删除,不是则不管!
修改上述代码如下所示:
/** * 模拟商品超卖代码 <br> * 解决`deductStock6`中,key形同虚设的问题。 * * @return */ @RequestMapping("/deductStock5") public String deductStock5() { // 创建一个key,保存至redis String key = "lock"; String lock_value = UUID.randomUUID().toString(); // setnx //让设置key和设置key的有效时间都可以同时执行 boolean result = stringRedisTemplate.opsForValue().setIfAbsent(key, lock_value, 10, TimeUnit.SECONDS); // 当不存在key时,可以设置成功,回执true;如果存在key,则无法设置,返回false if (!result) { // 前端监测,redis中存在,则不能让这个抢购操作执行,予以提示! return "err"; } try { // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if (stock > 0) { int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:" + realStock); } else { System.out.println("库存不足....."); } } finally { // 程序执行完成,则删除这个key // 放置于finally中,保证即使上述逻辑出问题,也能del掉 // 判断redis中该数据是否是这个接口处理时的设置的,如果是则删除 if(lock_value.equalsIgnoreCase(stringRedisTemplate.opsForValue().get(key))) { stringRedisTemplate.delete(key); } } return "end"; }
由于获得锁的线程必须执行完减库存逻辑才能释放锁,所以在此期间所有其他的线程都会由于没获得锁,而直接结束程序,导致有很多库存根本没有卖出去,所以这里应该可以优化,让没获得锁的线程等待,或者循环检查锁
最终版
我们将锁封装到一个实体类中,然后加入两个方法,加锁和解锁
@Component public class RedisLock { private final Logger log = LoggerFactory.getLogger(this.getClass()); private final long acquireTimeout = 10*1000; // 获取锁之前的超时时间(获取锁的等待重试时间) private final int timeOut = 20; // 获取锁之后的超时时间(防止死锁) @Autowired private StringRedisTemplate stringRedisTemplate; // 引入String类型redis操作模板 /** * 获取分布式锁 * @return 锁标识 */ public boolean getRedisLock(String lockName,String lockValue) { // 1.计算获取锁的时间 Long endTime = System.currentTimeMillis() + acquireTimeout; // 2.尝试获取锁 while (System.currentTimeMillis() < endTime) { //3. 获取锁成功就设置过期时间 让设置key和设置key的有效时间都可以同时执行 boolean result = stringRedisTemplate.opsForValue().setIfAbsent(lockName, lockValue, timeOut, TimeUnit.SECONDS); if (result) { return true; } } return false; } /** * 释放分布式锁 * @param lockName 锁名称 * @param lockValue 锁值 */ public void unRedisLock(String lockName,String lockValue) { if(lockValue.equalsIgnoreCase(stringRedisTemplate.opsForValue().get(lockName))) { stringRedisTemplate.delete(lockName); } } }
@RestController public class RedisController { // 引入String类型redis操作模板 @Autowired private StringRedisTemplate stringRedisTemplate; @Autowired private RedisLock redisLock; @RequestMapping("/setStock") public String setStock() { stringRedisTemplate.opsForValue().set("stock", "100"); return "ok"; } @RequestMapping("/deductStock") public String deductStock() { // 创建一个key,保存至redis String key = "lock"; String lock_value = UUID.randomUUID().toString(); try { boolean redisLock = this.redisLock.getRedisLock(key, lock_value);//获取锁 if (redisLock) { // 获取Redis数据库中的商品数量 Integer stock = Integer.parseInt(stringRedisTemplate.opsForValue().get("stock")); // 减库存 if (stock > 0) { int realStock = stock - 1; stringRedisTemplate.opsForValue().set("stock", String.valueOf(realStock)); System.out.println("商品扣减成功,剩余商品:" + realStock); } else { System.out.println("库存不足....."); } } } finally { redisLock.unRedisLock(key,lock_value); //释放锁 } return "end"; } }
可以看到失败的线程不会直接结束,而是会尝试重试,一直到重试结束时间,才会结束
实际上这个最终版依然存在3个问题
1、在finally流程中,由于是先判断在处理。如果判断条件结束后,获取到的结果为true。但是在执行del操作前,此时jvm在执行GC操作(为了保证GC操作获取GC roots根完全,会暂停java程序),导致程序暂停。在GC操作完成并恢复后,执行del操作时,当前被加锁的key是否仍然存在?
2、问题如图所示
以上是Springboot整合Redis如何实现超卖问题的详细内容。更多信息请关注PHP中文网其他相关文章!

Redis脱颖而出是因为其高速、多功能性和丰富的数据结构。1)Redis支持字符串、列表、集合、散列和有序集合等数据结构。2)它通过内存存储数据,支持RDB和AOF持久化。3)从Redis6.0开始引入多线程处理I/O操作,提升了高并发场景下的性能。

RedisisclassifiedasaNoSQLdatabasebecauseitusesakey-valuedatamodelinsteadofthetraditionalrelationaldatabasemodel.Itoffersspeedandflexibility,makingitidealforreal-timeapplicationsandcaching,butitmaynotbesuitableforscenariosrequiringstrictdataintegrityo

Redis通过缓存数据、实现分布式锁和数据持久化来提升应用性能和可扩展性。1)缓存数据:使用Redis缓存频繁访问的数据,提高数据访问速度。2)分布式锁:利用Redis实现分布式锁,确保在分布式环境中操作的安全性。3)数据持久化:通过RDB和AOF机制保证数据安全性,防止数据丢失。

Redis的数据模型和结构包括五种主要类型:1.字符串(String):用于存储文本或二进制数据,支持原子操作。2.列表(List):有序元素集合,适合队列和堆栈。3.集合(Set):无序唯一元素集合,支持集合运算。4.有序集合(SortedSet):带分数的唯一元素集合,适用于排行榜。5.哈希表(Hash):键值对集合,适合存储对象。

Redis的数据库方法包括内存数据库和键值存储。1)Redis将数据存储在内存中,读写速度快。2)它使用键值对存储数据,支持复杂数据结构,如列表、集合、哈希表和有序集合,适用于缓存和NoSQL数据库。

Redis是一个强大的数据库解决方案,因为它提供了极速性能、丰富的数据结构、高可用性和扩展性、持久化能力以及广泛的生态系统支持。1)极速性能:Redis的数据存储在内存中,读写速度极快,适合高并发和低延迟应用。2)丰富的数据结构:支持多种数据类型,如列表、集合等,适用于多种场景。3)高可用性和扩展性:支持主从复制和集群模式,实现高可用性和水平扩展。4)持久化和数据安全:通过RDB和AOF两种方式实现数据持久化,确保数据的完整性和可靠性。5)广泛的生态系统和社区支持:拥有庞大的生态系统和活跃社区,

Redis的关键特性包括速度、灵活性和丰富的数据结构支持。1)速度:Redis作为内存数据库,读写操作几乎瞬时,适用于缓存和会话管理。2)灵活性:支持多种数据结构,如字符串、列表、集合等,适用于复杂数据处理。3)数据结构支持:提供字符串、列表、集合、哈希表等,适合不同业务需求。

Redis的核心功能是高性能的内存数据存储和处理系统。1)高速数据访问:Redis将数据存储在内存中,提供微秒级别的读写速度。2)丰富的数据结构:支持字符串、列表、集合等,适应多种应用场景。3)持久化:通过RDB和AOF方式将数据持久化到磁盘。4)发布订阅:可用于消息队列或实时通信系统。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

SublimeText3汉化版
中文版,非常好用

Dreamweaver Mac版
视觉化网页开发工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器