2017 年,谷歌大脑团队在其论文《Attention Is All You Need》中创造性的提出 Transformer 这一架构,自此这一研究一路开挂,成为当今 NLP 领域最受欢迎的模型之一,被广泛应用于各种语言任务,并取得了许多 SOTA 结果。
不仅如此,在 NLP 领域一路领先的 Transformer,迅速席卷计算机视觉(CV)、语音识别等领域,在图像分类、目标检测、语音识别等任务上取得良好的效果。
论文地址:https://arxiv.org/pdf/1706.03762.pdf
从推出至今,Transformer 已经成为众多模型的核心模块,比如大家熟悉的 BERT、T5 等都有 Transformer 的身影。就连近段时间爆火的 ChatGPT 也依赖 Transformer,而后者早已被谷歌申请了专利。
图源:https://patentimages.storage.googleapis.com/05/e8/f1/cd8eed389b7687/US10452978.pdf
此外 OpenAI 发布的系列模型 GPT(Generative Pre-trained Transformer),名字中带有 Transformer,可见 Transformer 是 GPT 系列模型的核心。
与此同时,最近 OpenAI 联合创始人 Ilya Stutskever 在谈到 Transformer 时表示,当 Transformer 刚发布之初,实际上是论文放出来的第二天,他们就迫不及待的将以前的研究切换到 Transformer ,后续才有了 GPT。可见 Transformer 的重要性不言而喻。
6 年时间,基于 Transformer 构建的模型不断发展壮大。然而现在,有人发现了 Transformer 原始论文中的一处错误。
Transformer 架构图与代码「不一致」
发现错误的是一位知名机器学习与 AI 研究者、初创公司 Lightning AI 的首席 AI 教育家 Sebastian Raschka。他指出,原始 Transformer 论文中的架构图有误,将层归一化(LN)放置在了残差块之间,而这与代码不一致。
Transformer 架构图如下左,图右为 Post-LN Transformer 层(出自论文《On Layer Normalization in the Transformer Architecture》[1])。
不一致的代码部分如下,其中 82 行写了执行顺序「layer_postprocess_sequence="dan"」,表示后处理依次执行 dropout、residual_add 和 layer_norm。如果上图左中的 add&norm 理解为:add 在 norm 上面,即先 norm 再 add,那确实代码和图不一致。
代码地址:
https://github.com/tensorflow/tensor2tensor/commit/f5c9b17e617ea9179b7d84d36b1e8162cb369f25#diff-76e2b94ef16871bdbf46bf04dfe7f1477bafb884748f08197c9cf1b10a4dd78e…
接下来,Sebastian 又表示,论文《On Layer Normalization in the Transformer Architecture》认为 Pre-LN 表现更好,能够解决梯度问题。这是很多或者大多数架构在实践中所采用的,但它可能导致表示崩溃。
当层归一化在注意力和全连接层之前被放置于残差连接之中时,能够实现更好的梯度。
因此,虽然关于 Post-LN 或 Pre-LN 的争论仍在继续,但另一篇论文结合了这两点,即《ResiDual: Transformer with Dual Residual Connections》[2]。
对于 Sebastian 的这一发现,有人认为,我们经常会遇到与代码或结果不一致的论文。大多数是无心之过,但有时令人感到奇怪。考虑到 Transformer 论文的流行程度,这个不一致问题早就应该被提及 1000 次。
Sebastian 回答称,公平地讲,「最最原始」的代码确实与架构图一致,但 2017 年提交的代码版本进行了修改,同时没有更新架构图。所以,这实在令人困惑。
正如一位网友所说,「读代码最糟糕的是,你会经常发现这样的小变化,而你不知道是有意还是无意。你甚至无法测试它,因为你没有足够的算力来训练模型。」
不知谷歌之后会更新代码还是架构图,我们拭目以待!
以上是图与代码不一致,Transformer论文被发现错误,网友:早该被指出1000次的详细内容。更多信息请关注PHP中文网其他相关文章!

Curses首先出场的是 Curses[1]。CurseCurses 是一个能提供基于文本终端窗口功能的动态库,它可以: 使用整个屏幕 创建和管理一个窗口 使用 8 种不同的彩色 为程序提供鼠标支持 使用键盘上的功能键Curses 可以在任何遵循 ANSI/POSIX 标准的 Unix/Linux 系统上运行。Windows 上也可以运行,不过需要额外安装 windows-curses 库:pip install windows-curses 上面图片,就是一哥们用 Curses 写的 俄罗斯

相比大家都听过自动化生产线、自动化办公等词汇,在没有人工干预的情况下,机器可以自己完成各项任务,这大大提升了工作效率。编程世界里有各种各样的自动化脚本,来完成不同的任务。尤其Python非常适合编写自动化脚本,因为它语法简洁易懂,而且有丰富的第三方工具库。这次我们使用Python来实现几个自动化场景,或许可以用到你的工作中。1、自动化阅读网页新闻这个脚本能够实现从网页中抓取文本,然后自动化语音朗读,当你想听新闻的时候,这是个不错的选择。代码分为两大部分,第一通过爬虫抓取网页文本呢,第二通过阅读工

糟透了我承认我不是一个爱整理桌面的人,因为我觉得乱糟糟的桌面,反而容易找到文件。哈哈,可是最近桌面实在是太乱了,自己都看不下去了,几乎占满了整个屏幕。虽然一键整理桌面的软件很多,但是对于其他路径下的文件,我同样需要整理,于是我想到使用Python,完成这个需求。效果展示我一共为将文件分为9个大类,分别是图片、视频、音频、文档、压缩文件、常用格式、程序脚本、可执行程序和字体文件。# 不同文件组成的嵌套字典 file_dict = { '图片': ['jpg','png','gif','webp

长期以来,Python 社区一直在讨论如何使 Python 成为网页浏览器中流行的编程语言。然而网络浏览器实际上只支持一种编程语言:JavaScript。随着网络技术的发展,我们已经把越来越多的程序应用在网络上,如游戏、数据科学可视化以及音频和视频编辑软件。这意味着我们已经把繁重的计算带到了网络上——这并不是JavaScript的设计初衷。所有这些挑战提出了对新编程语言的需求,这种语言可以提供快速、可移植、紧凑和安全的代码执行。因此,主要的浏览器供应商致力于实现这个想法,并在2017年向世界推出

2017 年 Transformer 横空出世,由谷歌在论文《Attention is all you need》中引入。这篇论文抛弃了以往深度学习任务里面使用到的 CNN 和 RNN。这一开创性的研究颠覆了以往序列建模和 RNN 划等号的思路,如今被广泛用于 NLP。大热的 GPT、BERT 等都是基于 Transformer 构建的。Transformer 自推出以来,研究者已经提出了许多变体。但大家对 Transformer 的描述似乎都是以口头形式、图形解释等方式介绍该架构。关于 Tra

首先要说,聚类属于机器学习的无监督学习,而且也分很多种方法,比如大家熟知的有K-means。层次聚类也是聚类中的一种,也很常用。下面我先简单回顾一下K-means的基本原理,然后慢慢引出层次聚类的定义和分层步骤,这样更有助于大家理解。层次聚类和K-means有什么不同?K-means 工作原理可以简要概述为: 决定簇数(k) 从数据中随机选取 k 个点作为质心 将所有点分配到最近的聚类质心 计算新形成的簇的质心 重复步骤 3 和 4这是一个迭代过程,直到新形成的簇的质心不变,或者达到最大迭代次数

大家好,我是J哥。这个没有点数学基础是很难算出来的。但是我们有了计算机就不一样了,依靠计算机极快速的运算速度,我们利用微分的思想,加上一点简单的三角学知识,就可以实现它。好,话不多说,我们来看看它的算法原理,看图:由于待会要用pygame演示,它的坐标系是y轴向下,所以这里我们也用y向下的坐标系。算法总的思想就是根据上图,把时间t分割成足够小的片段(比如1/1000,这个时间片越小越精确),每一个片段分别构造如上三角形,计算出导弹下一个时间片走的方向(即∠a)和走的路程(即vt=|AC|),这时

集成GPT-4的Github Copilot X还在小范围内测中,而集成GPT-4的Cursor已公开发行。Cursor是一个集成GPT-4的IDE,可以用自然语言编写代码,让编写代码和聊天一样简单。 GPT-4和GPT-3.5在处理和编写代码的能力上差别还是很大的。官网的一份测试报告。前两个是GPT-4,一个采用文本输入,一个采用图像输入;第三个是GPT3.5,可以看出GPT-4的代码能力相较于GPT-3.5有较大能力的提升。集成GPT-4的Github Copilot X还在小范围内测中,而


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3汉化版
中文版,非常好用

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能