搜索
首页后端开发Python教程Python中的@cache怎么使用

    Python中的@cache有什么妙用?

    通过采用缓存策略,可以将空间转化为时间,从而提升计算机系统性能。缓存在代码中的作用是优化代码的运行速度,尽管会增加内存占用。

    在Python的内置模块 functools 中,提供了高阶函数 cache() 用于实现缓存,用装饰器的方式使用: @cache。

    @cache缓存功能介绍

    在cache的源码中,对cache的描述是:Simple lightweight unbounded cache. Sometimes called “memoize”. 翻译成中文:简单的轻量级无限制缓存。有时也被称为“记忆化”。

    def cache(user_function, /):
        'Simple lightweight unbounded cache.  Sometimes called "memoize".'
        return lru_cache(maxsize=None)(user_function)

    cache() 的代码只有一行,调用了 lru_cache() 函数,传入一个参数 maxsize=None。lru_cache() 也是 functools 模块中的函数,查看 lru_cache() 的源码,maxsize 的默认值是128,表示最大缓存128个数据,如果数据超过了128个,则按 LRU(最久未使用)算法删除多的数据。cache()将maxsize设置成None,则 LRU 特性被禁用且缓存数量可以无限增长,所以称为“unbounded cache”(无限制缓存)。

    lru_cache() 使用了 LRU(Least Recently Used)最久未使用算法,这也是函数名中有 lru 三个字母的原因。最久未使用算法的机制是,假设一个数据在最近一段时间没有被访问到,那么在将来它被访问的可能性也很小, LRU算法选择将最近最少使用的数据淘汰,保留那些经常被使用的数据。

    cache() 是在Python3.9版本新增的,lru_cache() 是在Python3.2版本新增的, cache() 在 lru_cache() 的基础上取消了缓存数量的限制,其实跟技术进步、硬件性能的大幅提升有关,cache() 和 lru_cache() 只是同一个功能的不同版本。

    lru_cache() 本质上是一个为函数提供缓存功能的装饰器,缓存 maxsize 组传入参数,在下次以相同参数调用函数时直接返回上一次的结果,用以节约高开销或高I/O函数的调用时间。

    @cache的应用场景

    缓存的应用场景很广泛,如静态 Web 内容的缓存,可以直接在用户访问静态网页的函数上加 @cache 装饰器。

    一些递归的代码中,存在反复传入同一个参数执行函数代码的情况,使用缓存可以避免重复计算,降低代码的时间复杂度。

    接下来,我用斐波那契数列作为例子来说明 @cache 的作用,如果前面的内容你看完了还一知半解,相信看完例子你会茅塞顿开。

    斐波那契数列是指这样一个数列:1、1、2、3、5、8、13、21、34、… ,从第三个数开始,每个数都是前两个数之和。大多数初学者都曾经编写过斐波那契数列的代码,它的实现并不困难,在Python中,代码非常简洁。如下:

    def feibo(n):
        # 第0个数和第1个数为1
        a, b = 1, 1
        for _ in range(n):
            # 将b赋值给a,将a+b赋值给b,循环n次
            a, b = b, a+b
        return a

    当然,斐波那契数列的代码实现方式有很多种(至少五六种),本文为了说明 @cache 的应用场景,用递归的方式来写斐波那契数列的代码。如下:

    def feibo_recur(n):
        if n < 0:
            return "n小于0无意义"
        # n为0或1时返回1(前两个数为1)
        if n == 0 or n == 1:
            return 1
        # 根据斐波那契数列的定义,其他情况递归返回前两个数之和
        return feibo_recur(n-1) + feibo_recur(n-2)

    递归代码执行时会一直递归到feibo_recur(1)和feibo_recur(0),如下图所示(以求第6个数为例)。

    Python中的@cache怎么使用

    求F(5)时要先求F(4)和F(3),求F(4)时要先求F(3)和F(2),… 以此类推,递归的过程与二叉树深度优先遍历的过程类似。已知高度为 k 的二叉树最多可以有 2k-1 个节点,根据上面递归调用的图示,二叉树的高度是 n,节点最多为 2n-1, 也就是递归调用函数的次数最多为 2n-1 次,所以递归的时间复杂度为 O(2^n) 。

    时间复杂度为O(2^n)时,执行时间随 n 的增大变化非常夸张,下面实际测试一下。

    import time
    for i in [10, 20, 30, 40]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)

    Output:

    第10个斐波那契数: 89
    n=10 Cost Time:  0.0
    第20个斐波那契数: 10946
    n=20 Cost Time:  0.0015988349914550781
    第30个斐波那契数: 1346269
    n=30 Cost Time:  0.17051291465759277
    第40个斐波那契数: 165580141
    n=40 Cost Time:  20.90010976791382

    从运行时间可以看出,在 n 很小时,运行很快,随着 n 的增大,运行时间极速上升,尤其 n 逐步增加到30和40时,运行时间变化得特别明显。为了更清晰地看出时间变化规律,再进一步进行测试。

    for i in [41, 42, 43]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)

    Output:

    第41个斐波那契数: 267914296
    n=41 Cost Time:  33.77224683761597
    第42个斐波那契数: 433494437
    n=42 Cost Time:  55.86398696899414
    第43个斐波那契数: 701408733
    n=43 Cost Time:  92.55108690261841

    从上面的变化可以看到,时间是指数级增长的(大约按1.65的指数增长),这跟时间复杂度为 O(2^n) 相符。按照这个时间复杂度,假如要计算第50个斐波那契数列,差不多要等一个小时,非常不合理,也说明递归的实现方式运算量过大,存在明显的不足。如何解决这种不足,降低运算量呢?接下来看如何进行优化。

    根据前面的分析,递归代码运算量大,是因为递归执行时会不断的计算 feibo_recur(n-1) 和 feibo_recur(n-2),如示例图中,要得到 feibo_recur(5) ,feibo_recur(1) 调用了5次。随着 n 的增大,调用次数呈指数级增长,导致出现大量的重复操作,浪费了许多时间。

    Python中的@cache怎么使用

    假如有一个地方将每个 n 的执行结果记录下来,当作“备忘录”,下次函数再接收到这个相同的参数时,直接从备忘录中获取结果,而不用去执行递归的过程,就可以避免这些重复调用。在 Python 中,可以创建一个字典或列表来当作“备忘录”使用。

    temp = {}  # 创建一个空字典,用来记录第i个斐波那契数列的值
    def feibo_recur_temp(n):
        if n < 0:
            return "n小于0无意义"
        # n为0或1时返回1(前两个数为1)
        if n == 0 or n == 1:
            return 1
        if n in temp:  # 如果temp字典中有n,则直接返回值,不调用递归代码
            return temp[n]
        else:
            # 如果字典中还没有第n个斐波那契数,则递归计算并保存到字典中
            temp[n] = feibo_recur_temp(n-1) + feibo_recur_temp(n-2)
            return temp[n]

    上面的代码中,创建了一个空字典用于存放每个 n 的执行结果。每次调用函数,都先查看字典中是否有记录,如果有记录就直接返回,没有记录就递归执行并将结果记录到字典中,再从字典中返回结果。这里的递归其实都只执行了一次计算,并没有真正的递归,如第一次传入 n 等于 5,执行 feibo_recur_temp(5),会递归执行 n 等于 4, 3, 2, 1, 0 的情况,每个 n 计算过一次后 temp 中都有了记录,后面都是直接到 temp 中取数相加。每个 n 都是从temp中取 n-1 和 n-2 的值来相加,执行一次计算,所以时间复杂度是 O(n) 。

    下面看一下代码的运行时间。

    for i in [10, 20, 30, 40, 41, 42, 43]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur_temp(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)
    print(temp)

    Output:

    第10个斐波那契数: 89
    n=10 Cost Time:  0.0
    第20个斐波那契数: 10946
    n=20 Cost Time:  0.0
    第30个斐波那契数: 1346269
    n=30 Cost Time:  0.0
    第40个斐波那契数: 165580141
    n=40 Cost Time:  0.0
    第41个斐波那契数: 267914296
    n=41 Cost Time:  0.0
    第42个斐波那契数: 433494437
    n=42 Cost Time:  0.0
    第43个斐波那契数: 701408733
    n=43 Cost Time:  0.0
    {2: 2, 3: 3, 4: 5, 5: 8, 6: 13, 7: 21, 8: 34, 9: 55, 10: 89, 11: 144, 12: 233, 13: 377, 14: 610, 15: 987, 16: 1597, 17: 2584, 18: 4181, 19: 6765, 20: 10946, 21: 17711, 22: 28657, 23: 46368, 24: 75025, 25: 121393, 26: 196418, 27: 317811, 28: 514229, 29: 832040, 30: 1346269, 31: 2178309, 32: 3524578, 33: 5702887, 34: 9227465, 35: 14930352, 36: 24157817, 37: 39088169, 38: 63245986, 39: 102334155, 40: 165580141, 41: 267914296, 42: 433494437, 43: 701408733}

    可以观察到,代码的运行时间已经减少到小数点后很多位了(时间过短,只显示了0.0)。然而,temp 字典存储了每个数字的斐波那契数,这需要使用额外的内存空间,以换取更高的时间效率。

    上面的代码也可以用列表来当“备忘录”,代码如下。

    temp = [1, 1]
    def feibo_recur_temp(n):
        if n < 0:
            return "n小于0无意义"
        if n == 0 or n == 1:
            return 1
        if n < len(temp):
            return temp[n]
        else:
            # 第一次执行时,将结果保存到列表中,后续直接从列表中取
            temp.append(feibo_recur_temp(n-1) + feibo_recur_temp(n-2))
            return temp[n]

    现在,已经剖析了递归代码重复执行带来的时间复杂度问题,也给出了优化时间复杂度的方法,让我们将注意力转回到本文介绍的 @cache 装饰器。@cache 装饰器的作用是将函数的执行结果缓存,在下次以相同参数调用函数时直接返回上一次的结果,与上面的优化方式完全一致。

    所以,只需要在递归函数上加 @cache 装饰器,递归的重复执行就可以解决,时间复杂度就能从 O(2^n) 降为 O(n) 。代码如下:

    from functools import cache
    @cache
    def feibo_recur(n):
        if n < 0:
            return "n小于0无意义"
        if n == 0 or n == 1:
            return 1
        return feibo_recur(n-1) + feibo_recur(n-2)

    使用 @cache 装饰器,可以让代码更简洁优雅,并且让你专注于处理业务逻辑,而不需要自己实现缓存。下面看一下实际的运行时间。

    for i in [10, 20, 30, 40, 41, 42, 43]:
        start = time.time()
        print(f&#39;第{i}个斐波那契数:&#39;, feibo_recur(i))
        end = time.time()
        print(f&#39;n={i} Cost Time: &#39;, end - start)

    Output:

    第10个斐波那契数: 89
    n=10 Cost Time:  0.0
    第20个斐波那契数: 10946
    n=20 Cost Time:  0.0
    第30个斐波那契数: 1346269
    n=30 Cost Time:  0.0
    第40个斐波那契数: 165580141
    n=40 Cost Time:  0.0
    第41个斐波那契数: 267914296
    n=41 Cost Time:  0.0
    第42个斐波那契数: 433494437
    n=42 Cost Time:  0.0
    第43个斐波那契数: 701408733
    n=43 Cost Time:  0.0

    完美地解决了问题,所有运行时间都被精确到了小数点后数位(即使只显示 0.0),非常巧妙。若今后遇到类似情形,可以直接采用 @cache 实现缓存功能,通过“记忆化”处理。

    补充:Python @cache装饰器

    @cache和@lru_cache(maxsize=None)可以用来寄存函数对已处理参数的结果,以便遇到相同参数可以直接给出答案。前者无限制存储数量,而后者通过设定maxsize限制存储数量的上限。

    例:

    @lru_cache(maxsize=None) # 等价于@cache
    def test(a,b):
        print(&#39;开始计算a+b的值...&#39;)
        return a + b

    可以用来做某些递归、动态规划。比如斐波那契数列的各项值从小到大输出。其实类似用数组保存前项的结果,都需要额外的空间。不过用装饰器可以省略额外空间代码,减少了出错的风险。

    以上是Python中的@cache怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明
    本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
    Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

    Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

    Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

    选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

    达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

    通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

    最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

    在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

    在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

    Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

    Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

    Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

    每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

    每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

    Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

    Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

    See all articles

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    Video Face Swap

    Video Face Swap

    使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

    热工具

    VSCode Windows 64位 下载

    VSCode Windows 64位 下载

    微软推出的免费、功能强大的一款IDE编辑器

    MinGW - 适用于 Windows 的极简 GNU

    MinGW - 适用于 Windows 的极简 GNU

    这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

    mPDF

    mPDF

    mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

    PhpStorm Mac 版本

    PhpStorm Mac 版本

    最新(2018.2.1 )专业的PHP集成开发工具

    SublimeText3 英文版

    SublimeText3 英文版

    推荐:为Win版本,支持代码提示!