搜索
首页后端开发Python教程Python虚拟机中调试器的实现原理是什么

调试器是一个编程语言非常重要的部分,调试器是一种用于诊断和修复代码错误(或称为 bug)的工具,它允许开发者在程序执行时逐步查看和分析代码的状态和行为,它可以帮助开发者诊断和修复代码错误,理解程序的行为,优化性能。调试器在任何编程语言中都是一个非常强大的工具,可以提高开发效率和代码质量。

让程序停下来

如果我们需要对一个程序进行调试最重要的一个点就是如果让程序停下来,只有让程序的执行停下来我们才能够观察程序执行的状态,比如我们需要调试 99 乘法表:

def m99():
    for i in range(1, 10):
        for j in range(1, i + 1):
            print(f"{i}x{j}={i*j}", end='\t')
        print()


if __name__ == '__main__':
    m99()

现在执行命令 python -m pdb pdbusage.py 就可以对上面的程序进行调试:

(py3.8) ➜  pdb_test git:(master) ✗ python -m pdb pdbusage.py
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(3)4225fa317875f3e92281a7b1a5733569()
-> def m99():
(Pdb) s
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(10)4225fa317875f3e92281a7b1a5733569()
-> if __name__ == '__main__':
(Pdb) s
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(11)4225fa317875f3e92281a7b1a5733569()
-> m99()
(Pdb) s
--Call--
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(3)m99()
-> def m99():
(Pdb) s
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(4)m99()
-> for i in range(1, 10):
(Pdb) s
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(5)m99()
-> for j in range(1, i + 1):
(Pdb) s
> /Users/xxxx/Desktop/workdir/dive-into-cpython/code/pdb_test/pdbusage.py(6)m99()
-> print(f"{i}x{j}={i*j}", end='\t')
(Pdb) p i
1
(Pdb) 

当然你也可以在 IDE 当中进行调试:

Python虚拟机中调试器的实现原理是什么

根据我们的调试经历容易知道,要想调试一个程序首先最重要的一点就是程序需要在我们设置断点的位置要能够停下来

cpython 王炸机制 —— tracing

现在的问题是,上面的程序是怎么在程序执行时停下来的呢?

根据前面的学习我们可以了解到,一个 python 程序的执行首先需要经过 python 编译器编译成 python 字节码,然后交给 python 虚拟机进行执行,如果需要程序停下来就一定需要虚拟机给上层的 python 程序提供接口,让程序在执行的时候可以知道现在执行到什么位置了。这个神秘的机制就隐藏在 sys 这个模块当中,事实上这个模块几乎承担了所有我们与 python 解释器交互的接口。实现调试器一个非常重要的函数就是 sys.settrace 函数,这个函数将为线程设置一个追踪函数,当虚拟机有函数调用,执行完一行代码的时候、甚至执行完一条字节码之后就会执行这个函数。

实现一个 Python 源代码调试器,需要在系统中设置跟踪函数。该函数是线程特定的;为了支持多线程调试,必须对每个正在调试的线程注册一个跟踪函数,使用 settrace() 或者使用 threading.settrace() 。

跟踪函数应该有三个参数:frame、event 和 arg。frame 是当前的栈帧。event 是一个字符串:'call'、'line'、'return'、'exception'、 'opcode' 、'c_call' 或者 'c_exception'。arg 取决于事件类型。

跟踪函数在每次进入新的局部作用域时被调用(事件设置为'call');它应该返回一个引用,用于新作用域的本地跟踪函数,或者如果不想在该作用域中进行跟踪,则返回None。

如果在跟踪函数中发生任何错误,它将被取消设置,就像调用settrace(None)一样。

事件的含义如下:

  • call,调用了一个函数(或者进入了其他代码块)。调用本地跟踪函数时,指定了 arg 为 None,并在返回值中指定了本地函数。

  • line,将要执行一行新的代码,参数 arg 的值为 None 。

  • return,函数(或其他代码块)即将返回。当事件由异常引起时,本地跟踪函数被调用并返回arg值为None。跟踪函数的返回值将被忽略。

  • exception,发生了异常。调用本地跟踪函数;arg是一个元组(exception,value,traceback);返回值指定了新的本地跟踪函数。

  • opcode,解释器即将执行新的字节码指令。执行本地追踪函数,arg为空,返回一个新的本地追踪函数。默认情况下,不会发出每个操作码的事件:必须通过在帧上设置 f_trace_opcodes 为 True 来显式请求。

  • c_call,一个 c 函数将要被调用。

  • c_exception,调用 c 函数的时候产生了异常。

自己动手实现一个简单的调试器

我们将在此章节中实现一个简单的调试器,以帮助大家理解调试器的实现原理。调试器的实现代码如下所示,只有短短几十行却可以帮助我们深入去理解调试器的原理,我们先看一下实现的效果在后文当中再去分析具体的实现:

import sys

file = sys.argv[1]
with open(file, "r+") as fp:
    code = fp.read()
lines = code.split("\n")


def do_line(frame, event, arg):
    print("debugging line:", lines[frame.f_lineno - 1])
    return debug


def debug(frame, event, arg):
    if event == "line":
        while True:
            _ = input("(Pdb)")
            if _ == 'n':
                return do_line(frame, event, arg)
            elif _.startswith('p'):
                _, v = _.split()
                v = eval(v, frame.f_globals, frame.f_locals)
                print(v)
            elif _ == 'q':
                sys.exit(0)
    return debug


if __name__ == '__main__':
    sys.settrace(debug)
    exec(code, None, None)
    sys.settrace(None)

在上面的程序当中使用如下:

  • 输入 n 执行一行代码。

  • p name 打印变量 name 。

  • q 退出调试。

现在我们执行上面的程序,进行程序调试:

(py3.10) ➜  pdb_test git:(master) ✗ python mydebugger.py pdbusage.py
(Pdb)n
debugging line: def m99():
(Pdb)n
debugging line: if __name__ == '__main__':
(Pdb)n
debugging line:     m99()
(Pdb)n
debugging line:     for i in range(1, 10):
(Pdb)n
debugging line:         for j in range(1, i + 1):
(Pdb)n
debugging line:             print(f"{i}x{j}={i*j}", end='\t')
1x1=1   (Pdb)n
debugging line:         for j in range(1, i + 1):
(Pdb)p i
1
(Pdb)p j
1
(Pdb)q
(py3.10) ➜  pdb_test git:(master) ✗ 

Python虚拟机中调试器的实现原理是什么

可以看到我们的程序真正的被调试起来了。

现在我们来分析一下我们自己实现的简易版本的调试器,在前文当中我们已经提到了 sys.settrace 函数,调用这个函数时需要传递一个函数作为参数,被传入的函数需要接受三个参数:

  • frame,当前正在执行的栈帧。

  • event,事件的类别,这一点在前面的文件当中已经提到了。

  • arg,参数这一点在前面也已经提到了。

  • 同时需要注意的是这个函数也需要有一个返回值,python 虚拟机在下一次事件发生的时候会调用返回的这个函数,如果返回 None 那么就不会在发生事件的时候调用 tracing 函数了,这是代码当中为什么在 debug 返回 debug 的原因。

我们只对 line 这个事件进行处理,然后进行死循环,只有输入 n 指令的时候才会执行下一行,然后打印正在执行的行,这个时候就会退出函数 debug ,程序就会继续执行了。python 内置的 eval 函数可以获取变量的值。

python 官方调试器源码分析

python 官方的调试器为 pdb 这个是 python 标准库自带的,我们可以通过 python -m pdb xx.py 去调试文件 xx.py 。这里我们只分析核心代码:

代码位置:bdp.py 下面的 Bdb 类

    def run(self, cmd, globals=None, locals=None):
        """Debug a statement executed via the exec() function.

        globals defaults to __main__.dict; locals defaults to globals.
        """
        if globals is None:
            import __main__
            globals = __main__.__dict__
        if locals is None:
            locals = globals
        self.reset()
        if isinstance(cmd, str):
            cmd = compile(cmd, "<string>", "exec")
        sys.settrace(self.trace_dispatch)
        try:
            exec(cmd, globals, locals)
        except BdbQuit:
            pass
        finally:
            self.quitting = True
            sys.settrace(None)

上面的函数主要是使用 sys.settrace 函数进行 tracing 操作,当有事件发生的时候就能够捕捉了。在上面的代码当中 tracing 函数为 self.trace_dispatch 我们再来看这个函数的代码:

    def trace_dispatch(self, frame, event, arg):
        """Dispatch a trace function for debugged frames based on the event.

        This function is installed as the trace function for debugged
        frames. Its return value is the new trace function, which is
        usually itself. The default implementation decides how to
        dispatch a frame, depending on the type of event (passed in as a
        string) that is about to be executed.

        The event can be one of the following:
            line: A new line of code is going to be executed.
            call: A function is about to be called or another code block
                  is entered.
            return: A function or other code block is about to return.
            exception: An exception has occurred.
            c_call: A C function is about to be called.
            c_return: A C function has returned.
            c_exception: A C function has raised an exception.

        For the Python events, specialized functions (see the dispatch_*()
        methods) are called.  For the C events, no action is taken.

        The arg parameter depends on the previous event.
        """
        if self.quitting:
            return # None
        if event == &#39;line&#39;:
            print("In line")
            return self.dispatch_line(frame)
        if event == &#39;call&#39;:
            print("In call")
            return self.dispatch_call(frame, arg)
        if event == &#39;return&#39;:
            print("In return")
            return self.dispatch_return(frame, arg)
        if event == &#39;exception&#39;:
            print("In execption")
            return self.dispatch_exception(frame, arg)
        if event == &#39;c_call&#39;:
            print("In c_call")
            return self.trace_dispatch
        if event == &#39;c_exception&#39;:
            print("In c_exception")
            return self.trace_dispatch
        if event == &#39;c_return&#39;:
            print("In c_return")
            return self.trace_dispatch
        print(&#39;bdb.Bdb.dispatch: unknown debugging event:&#39;, repr(event))
        return self.trace_dispatch

从上面的代码当中可以看到每一种事件都有一个对应的处理函数,在本文当中我们主要分析 函数 dispatch_line,这个处理 line 事件的函数。

    def dispatch_line(self, frame):
        """Invoke user function and return trace function for line event.

        If the debugger stops on the current line, invoke
        self.user_line(). Raise BdbQuit if self.quitting is set.
        Return self.trace_dispatch to continue tracing in this scope.
        """
        if self.stop_here(frame) or self.break_here(frame):
            self.user_line(frame)
            if self.quitting: raise BdbQuit
        return self.trace_dispatch

这个函数首先会判断是否需要在当前行停下来,如果需要停下来就需要进入 user_line 这个函数,后面的调用链函数比较长,我们直接看最后执行的函数,根据我们使用 pdb 的经验来看,最终肯定是一个 while 循环让我们可以不断的输入指令进行处理:

    def cmdloop(self, intro=None):
        """Repeatedly issue a prompt, accept input, parse an initial prefix
        off the received input, and dispatch to action methods, passing them
        the remainder of the line as argument.

        """
        print("In cmdloop")
        self.preloop()
        if self.use_rawinput and self.completekey:
            try:
                import readline
                self.old_completer = readline.get_completer()
                readline.set_completer(self.complete)
                readline.parse_and_bind(self.completekey+": complete")
            except ImportError:
                pass
        try:
            if intro is not None:
                self.intro = intro
            print(f"{self.intro = }")
            if self.intro:
                self.stdout.write(str(self.intro)+"\n")
            stop = None
            while not stop:
                print(f"{self.cmdqueue = }")
                if self.cmdqueue:
                    line = self.cmdqueue.pop(0)
                else:
                    print(f"{self.prompt = } {self.use_rawinput}")
                    if self.use_rawinput:
                        try:
                            # 核心逻辑就在这里 不断的要求输入然后进行处理
                            line = input(self.prompt) # self.prompt = &#39;(Pdb)&#39;
                        except EOFError:
                            line = &#39;EOF&#39;
                    else:
                        self.stdout.write(self.prompt)
                        self.stdout.flush()
                        line = self.stdin.readline()
                        if not len(line):
                            line = &#39;EOF&#39;
                        else:
                            line = line.rstrip(&#39;\r\n&#39;)

                line = self.precmd(line)
                stop = self.onecmd(line) # 这个函数就是处理我们输入的字符串的比如 p n 等等
                stop = self.postcmd(stop, line)
            self.postloop()
        finally:
            if self.use_rawinput and self.completekey:
                try:
                    import readline
                    readline.set_completer(self.old_completer)
                except ImportError:
                    pass
    def onecmd(self, line):
        """Interpret the argument as though it had been typed in response
        to the prompt.

        This may be overridden, but should not normally need to be;
        see the precmd() and postcmd() methods for useful execution hooks.
        The return value is a flag indicating whether interpretation of
        commands by the interpreter should stop.

        """
        cmd, arg, line = self.parseline(line)
        if not line:
            return self.emptyline()
        if cmd is None:
            return self.default(line)
        self.lastcmd = line
        if line == &#39;EOF&#39; :
            self.lastcmd = &#39;&#39;
        if cmd == &#39;&#39;:
            return self.default(line)
        else:
            try:
                # 根据下面的代码可以分析了解到如果我们执行命令 p 执行的函数为 do_p
                func = getattr(self, &#39;do_&#39; + cmd)
            except AttributeError:
                return self.default(line)
            return func(arg)

现在我们再来看一下 do_p 打印一个表达式是如何实现的:

    def do_p(self, arg):
        """p expression
        Print the value of the expression.
        """
        self._msg_val_func(arg, repr)

    def _msg_val_func(self, arg, func):
        try:
            val = self._getval(arg)
        except:
            return  # _getval() has displayed the error
        try:
            self.message(func(val))
        except:
            self._error_exc()

    def _getval(self, arg):
        try:
            # 看到这里就破案了这不是和我们自己实现的 pdb 获取变量的方式一样嘛 都是
            # 使用当前执行栈帧的全局和局部变量交给 eval 函数处理 并且将它的返回值输出
            return eval(arg, self.curframe.f_globals, self.curframe_locals)
        except:
            self._error_exc()
            raise

以上是Python虚拟机中调试器的实现原理是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

python在行动中:现实世界中的例子python在行动中:现实世界中的例子Apr 18, 2025 am 12:18 AM

Python在现实世界中的应用包括数据分析、Web开发、人工智能和自动化。1)在数据分析中,Python使用Pandas和Matplotlib处理和可视化数据。2)Web开发中,Django和Flask框架简化了Web应用的创建。3)人工智能领域,TensorFlow和PyTorch用于构建和训练模型。4)自动化方面,Python脚本可用于复制文件等任务。

Python的主要用途:综合概述Python的主要用途:综合概述Apr 18, 2025 am 12:18 AM

Python在数据科学、Web开发和自动化脚本领域广泛应用。1)在数据科学中,Python通过NumPy、Pandas等库简化数据处理和分析。2)在Web开发中,Django和Flask框架使开发者能快速构建应用。3)在自动化脚本中,Python的简洁性和标准库使其成为理想选择。

Python的主要目的:灵活性和易用性Python的主要目的:灵活性和易用性Apr 17, 2025 am 12:14 AM

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python:多功能编程的力量Python:多功能编程的力量Apr 17, 2025 am 12:09 AM

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

每天2小时学习Python:实用指南每天2小时学习Python:实用指南Apr 17, 2025 am 12:05 AM

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

WebStorm Mac版

WebStorm Mac版

好用的JavaScript开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。