夕小瑶科技说 原创
作者 | iven
火遍全网的AutoGPT[1]在Github收藏量突破十万。这种自我规划、自我执行的智能体首次关注人工智能模型内部的自我调整与优化。
但是有不少网友发现,AutoGPT的表现不稳定,死循环是最常见的现象。此外,AutoGPT执行速度很慢,据网友测试,New Bing需要8s的任务,AutoGPT用了整整8分钟!
AutoGPT的工作方式使得它对与单个任务要调用很多次API,据计算单次任务的成本就超过了100元!显然这样的花费对于个人使用是昂贵的。
微软研究院近日新工作提出Low-code LLM,通过简单的可视化操作通过拖拖拽拽的方式与智能体进行协作。
该模式首先让GPT生成一个任务流程图,这点与AutoGPT的自我规划自我执行的逻辑很为相像,但不同的是,用户可以直观地轻松地了解和修改整个执行流程,从而有效控制人工智能的操作。
之所以称为“Low-code”,是因为它采用了可视化编程的概念,用户只需通过简单的点击和拖拽就可以对流程进行调整。对于复杂的任务,用户可以将自己的想法或偏好有效地对智能体进行控制。
Low-code LLM生成流程图是在一次对话中完成的,调用API的花费基本可以忽略不计,而且这样一次性生成流程图的方式也避免了AutoGPT中死循环的问题,使得服务更加稳定!
作者发现这项工作放在微软TaskMatrix.ai[2]的Repo里,已经超过30k star。Visual ChatGPT[3]也来自同一团队。TaskMatrix.AI展现了如何连接foundation models和大量的各领域的api实现Task Automation(Visual ChatGPT就是其在视觉领域的一个经典范例)。最新推出的Low-code LLM则可以在与用户交互方面发挥作用,帮助用户让AI更理解用户到底想做什么。
论文地址:https://www.php.cn/link/de9240f5c623bf031dcf0fca9770db44
论文题目:"Low-code LLM: Visual Programming over LLMs."
开源代码:https://www.php.cn/link/141aa4fef48df77f954d60a373a3c322
预定义的6类low code操作
该模式的优点如下:
此外,Low-code LLM还可以与外部API扩展,进一步丰富场景应用。例如,高效传达用户想法和偏好,帮助用户实现任务自动化。在对接其他工具时,可以将视觉和语音等多种功能整合进来。
AutoGPT和Low-code LLM都在努力提升人工智能模型的性能和效果,前者关注模型内部的自我优化和学习,后者关注用户与模型之间的协同和交互。这两种方法可以相互补充,在不同场景和任务下取得更好的表现。
论文的致谢部分,还提到了这篇文章部分就是通过这种模式进行合作生成的,看来未来人和大模型紧密合作共创不再是梦。
以上是AutoGPT不靠谱,微软推出升级版!可编辑自主规划过程的详细内容。更多信息请关注PHP中文网其他相关文章!