搜索
首页科技周边人工智能蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

尽管大型语言模型能力惊人,但由于规模较大,其部署所需的成本往往巨大。华盛顿大学联合谷歌云计算人工智能研究院、谷歌研究院针对该问题进行了进一步解决,提出了逐步蒸馏(Distilling Step-by-Step)范式帮助模型训练。相对于LLM,这种方法对于训练小型模型并应用于特定任务方面更加有效,且所需的训练数据要比传统的微调和蒸馏更少。在一个基准任务上,他们的 770M T5 模型胜过了 540B PaLM 模型。令人印象深刻的是,他们的模型只使用了可用数据的 80%。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

虽然大型语言模型(LLMs)展现了令人印象深刻的少样本学习能力,但将这样大规模的模型部署在现实应用中是很难的。为 1750 亿参数规模的 LLM 提供服务的专门基础设施,至少需要 350GB 的 GPU 内存。更甚者,现今最先进的 LLM 是由超过 5000 亿的参数组成的,这意味着它需要更多的内存和计算资源。这样的计算要求对于大多数生产商来说都是难以企及的,更何况是要求低延迟的应用了。

为了解决大型模型的这个问题,部署者往往采用小一些的特定模型来替代。这些小一点的模型用常见范式 —— 微调或是蒸馏来进行训练。微调使用下游的人类注释数据升级一个预训练过的小模型。蒸馏用较大的 LLM 产生的标签训练同样较小的模型。但是很遗憾,这些范式在缩小模型规模的同时也付出了代价:为了达到与 LLM 相当的性能,微调需要昂贵的人类标签,而蒸馏需要大量很难获得的无标签数据。

在一篇题为「Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smaller Model Sizes」的论文中,来自华盛顿大学、谷歌的研究者引入了一种新的简单机制 —— 逐步蒸馏(Distilling step-bystep),用于使用更少的训练数据来训练更小的模型。这种机制减少了微调和蒸馏 LLM 所需的训练数据量,使之有更小的模型规模。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

论文链接:https://arxiv.org/pdf/2305.02301v1.pdf

该机制的核心是换一种角度,将 LLM 看作是可以推理的 agent,而不是噪声标签的来源。LLM 可以产生自然语言的理由(rationale),这些理由可以用来解释和支持模型所预测的标签。例如,当被问及「一位先生携带着打高尔夫球的设备,他可能有什么?(a) 球杆,(b) 礼堂,(c) 冥想中心,(d) 会议,(e) 教堂」,LLM 可以通过思维链(CoT)推理回答出「(a)球杆」,并通过说明「答案一定是用来打高尔夫球的东西」来合理化这个标签。在上述选择中,只有球杆是用来打高尔夫的。研究者使用这些理由作为额外更丰富的信息在多任务训练设置中训练较小的模型,并进行标签预测和理由预测。

如图 1 所示,逐步蒸馏可以学习特定任务的小模型,这些模型的参数量还不到 LLM 的 1/500。与传统的微调或蒸馏相比,逐步蒸馏使用的训练示例要也少得多。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

实验结果显示,在 4 个 NLP 基准中,有三个有希望的实验结论。

  • 第一,相对于微调和蒸馏,逐步蒸馏模型在各数据集上实现了更好的性能,平均减少了 50% 以上的训练实例(最多可减少 85% 以上)。
  • 第二,我们的模型在模型尺寸更小的情况下表现优于 LLM(最多可以小到 2000 倍),极大地降低了模型部署所需的计算成本。
  • 第三,该研究在缩减模型尺寸的同时,也减少了超越 LLM 所需要的数据量。研究者使用一个 770M 的 T5 模型超越了 540B 参数的 LLM 的性能。这个较小的模型只使用了现有微调方法 80% 的标记数据集。

当只有未标记的数据时,小模型的表现相比 LLM 而言仍然有过之而无不及 —— 只用一个 11B 的 T5 模型就超过了 540B 的 PaLM 的性能。

该研究进一步表明,当一个较小的模型表现比 LLM 差时,与标准的蒸馏方法相比,逐步蒸馏可以更有效地利用额外的无标签数据来使较小的模型媲美 LLM 的性能。

逐步蒸馏

研究者提出了逐步蒸馏这个新范式,是利用 LLM 对其预测的推理能力,以数据高效率的方式训练更小的模型。整体框架如图 2 所示。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

该范式有两个简单的步骤:首先,给定一个 LLM 和一个无标签的数据集,提示 LLM 生成输出标签以及证明该标签成立的理由。理由用自然语言解释,为模型预测的标签提供支持(见图 2)。理由是当前自监督 LLM 的一个涌现的行为属性。

然后,除了任务标签之外,利用这些理由来训练更小的下游模型。说白了,理由能提供了更丰富、更详细的信息,来说明一个输入为什么被映射到一个特定的输出标签。

实验结果

研究者在实验中验证了逐步蒸馏的有效性。首先,与标准的微调和任务蒸馏方法相比,逐步蒸馏有助于实现更好的性能,训练实例的数量少得多,大幅提高了学习小型特定任务模型的数据效率。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

其次,研究表明,逐步蒸馏方法以更小的模型大小超越了 LLM 的性能,与 llm 相比,大大降低了部署成本。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

最后,研究者调查了逐步蒸馏方法在超过 LLM 的性能方面所需的最低资源,包括训练示例数量和模型大小。他们展示了逐步蒸馏方法通过使用更少的数据和更小的模型,同时提高了数据效率和部署效率。

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型

以上是蒸馏也能Step-by-Step:新方法让小模型也能媲美2000倍体量大模型的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
无法使用chatgpt!解释可以立即测试的原因和解决方案[最新2025]无法使用chatgpt!解释可以立即测试的原因和解决方案[最新2025]May 14, 2025 am 05:04 AM

ChatGPT无法访问?本文提供多种实用解决方案!许多用户在日常使用ChatGPT时,可能会遇到无法访问或响应缓慢等问题。本文将根据不同情况,逐步指导您解决这些问题。 ChatGPT无法访问的原因及初步排查 首先,我们需要确定问题是出在OpenAI服务器端,还是用户自身网络或设备问题。 请按照以下步骤进行排查: 步骤1:检查OpenAI官方状态 访问OpenAI Status页面 (status.openai.com),查看ChatGPT服务是否正常运行。如果显示红色或黄色警报,则表示Open

计算ASI的风险始于人类的思想计算ASI的风险始于人类的思想May 14, 2025 am 05:02 AM

2025年5月10日,麻省理工学院物理学家Max Tegmark告诉《卫报》,AI实验室应在释放人工超级智能之前模仿Oppenheimer的三位一体测试演算。 “我的评估是'康普顿常数',这是一场比赛的可能性

易于理解的解释如何编写和撰写歌词和推荐工具易于理解的解释如何编写和撰写歌词和推荐工具May 14, 2025 am 05:01 AM

AI音乐创作技术日新月异,本文将以ChatGPT等AI模型为例,详细讲解如何利用AI辅助音乐创作,并辅以实际案例进行说明。我们将分别介绍如何通过SunoAI、Hugging Face上的AI jukebox以及Python的Music21库进行音乐创作。 通过这些技术,每个人都能轻松创作原创音乐。但需注意,AI生成内容的版权问题不容忽视,使用时务必谨慎。 让我们一起探索AI在音乐领域的无限可能! OpenAI最新AI代理“OpenAI Deep Research”介绍: [ChatGPT]Ope

什么是chatgpt-4?对您可以做什么,定价以及与GPT-3.5的差异的详尽解释!什么是chatgpt-4?对您可以做什么,定价以及与GPT-3.5的差异的详尽解释!May 14, 2025 am 05:00 AM

ChatGPT-4的出现,极大地拓展了AI应用的可能性。相较于GPT-3.5,ChatGPT-4有了显着提升,它具备强大的语境理解能力,还能识别和生成图像,堪称万能的AI助手。在提高商业效率、辅助创作等诸多领域,它都展现出巨大的潜力。然而,与此同时,我们也必须注意其使用上的注意事项。 本文将详细解读ChatGPT-4的特性,并介绍针对不同场景的有效使用方法。文中包含充分利用最新AI技术的技巧,敬请参考。 OpenAI发布的最新AI代理,“OpenAI Deep Research”详情请点击下方链

解释如何使用chatgpt应用程序!日本支持和语音对话功能解释如何使用chatgpt应用程序!日本支持和语音对话功能May 14, 2025 am 04:59 AM

CHATGPT应用程序:与AI助手释放您的创造力!初学者指南 ChatGpt应用程序是一位创新的AI助手,可处理各种任务,包括写作,翻译和答案。它是一种具有无限可能性的工具,可用于创意活动和信息收集。 在本文中,我们将以一种易于理解的方式解释初学者,从如何安装chatgpt智能手机应用程序到语音输入功能和插件等应用程序所独有的功能,以及在使用该应用时要牢记的要点。我们还将仔细研究插件限制和设备对设备配置同步

如何使用中文版Chatgpt?注册程序和费用的说明如何使用中文版Chatgpt?注册程序和费用的说明May 14, 2025 am 04:56 AM

ChatGPT中文版:解锁中文AI对话新体验 ChatGPT风靡全球,您知道它也提供中文版本吗?这款强大的AI工具不仅支持日常对话,还能处理专业内容,并兼容简体中文和繁体中文。无论是中国地区的使用者,还是正在学习中文的朋友,都能从中受益。 本文将详细介绍ChatGPT中文版的使用方法,包括账户设置、中文提示词输入、过滤器的使用、以及不同套餐的选择,并分析潜在风险及应对策略。此外,我们还将对比ChatGPT中文版和其他中文AI工具,帮助您更好地了解其优势和应用场景。 OpenAI最新发布的AI智能

5 AI代理神话,您需要停止相信5 AI代理神话,您需要停止相信May 14, 2025 am 04:54 AM

这些可以将其视为生成AI领域的下一个飞跃,这为我们提供了Chatgpt和其他大型语言模型聊天机器人。他们可以代表我们采取行动,而不是简单地回答问题或产生信息

易于理解使用Chatgpt创建和管理多个帐户的非法性的解释易于理解使用Chatgpt创建和管理多个帐户的非法性的解释May 14, 2025 am 04:50 AM

使用chatgpt有效的多个帐户管理技术|关于如何使用商业和私人生活的详尽解释! Chatgpt在各种情况下都使用,但是有些人可能担心管理多个帐户。本文将详细解释如何为ChatGpt创建多个帐户,使用时该怎么做以及如何安全有效地操作它。我们还介绍了重要的一点,例如业务和私人使用差异,并遵守OpenAI的使用条款,并提供指南,以帮助您安全地利用多个帐户。 Openai

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)