我们将在本文中衡量交易策略的表现。并将开发一个简单的动量交易策略,它将使用四种资产类别:债券、股票和房地产。这些资产类别的相关性很低,这使得它们成为了极佳的风险平衡选择。
动量交易策略
这个策略是基于动量的的,因为交易者和投资者早就意识到动量的影响,这可以在广泛的市场和时间框架中看到。所以我们称之为动量策略。趋势跟踪或时间序列动量 (TSM) 是在单一工具上使用这些策略的另一个名称。我们将创建一个基本的动量策略并在 TCS 上对其进行测试以查看其性能。
TSM策略分析
首先,我们将导入一些库
import numpy as np import pandas as pd import matplotlib.pyplot as plt import yfinance as yf import ffn %matplotlib inline
我们构建基本的动量策略函数TSMStrategy。函数将通过时间序列的对数回报、感兴趣的时间段以及是否允许做空的布尔变量的布尔变量来返回预期表现。
def TSMStrategy(returns, period=1, shorts=False): if shorts: position = returns.rolling(period).mean().map( lambda x: -1 if x <= 0 else 1) else: position = returns.rolling(period).mean().map( lambda x: 0 if x <= 0 else 1) performance = position.shift(1) * returns return performance ticker = 'TCS' yftcs = yf.Ticker(ticker) data = yftcs.history(start='2005-01-01', end='2021-12-31') returns = np.log(data['Close'] / data['Close'].shift(1)).dropna() performance = TSMStrategy(returns, period=1, shorts=False).dropna() years = (performance.index.max() - performance.index.min()).days / 365 perf_cum = np.exp(performance.cumsum()) tot = perf_cum[-1] - 1 ann = perf_cum[-1] ** (1 / years) - 1 vol = performance.std() * np.sqrt(252) rfr = 0.02 sharpe = (ann - rfr) / vol print(f"1-day TSM Strategy yields:" + f"nt{tot*100:.2f}% total returns" + f"nt{ann*100:.2f}% annual returns" + f"nt{sharpe:.2f} Sharpe Ratio") tcs_ret = np.exp(returns.cumsum()) b_tot = tcs_ret[-1] - 1 b_ann = tcs_ret[-1] ** (1 / years) - 1 b_vol = returns.std() * np.sqrt(252) b_sharpe = (b_ann - rfr) / b_vol print(f"Baseline Buy-and-Hold Strategy yields:" + f"nt{b_tot*100:.2f}% total returns" + f"nt{b_ann*100:.2f}% annual returns" + f"nt{b_sharpe:.2f} Sharpe Ratio")
函数输出如下:
1-day TSM Strategy yields: -45.15% total returns -7.10% annual returns -0.17 Sharpe Ratio Baseline Buy-and-Hold Strategy yields: -70.15% total returns -13.78% annual returns -0.22 Sharpe Ratio
在合理的年化回报上,1日TSM策略优于买入并持有策略。因为 1 天的回顾可能包含许多错误趋势,所以我们尝试不同的时间段来查看它们的比较情况。这里将循环运行模型 3、5、15、30 和 90 天。
import matplotlib.gridspec as gridspec periods = [3, 5, 15, 30, 90] fig = plt.figure(figsize=(12, 10)) gs = fig.add_gridspec(4, 4) ax0 = fig.add_subplot(gs[:2, :4]) ax1 = fig.add_subplot(gs[2:, :2]) ax2 = fig.add_subplot(gs[2:, 2:]) ax0.plot((np.exp(returns.cumsum()) - 1) * 100, label=ticker, linestyle='-') perf_dict = {'tot_ret': {'buy_and_hold': (np.exp(returns.sum()) - 1)}} perf_dict['ann_ret'] = {'buy_and_hold': b_ann} perf_dict['sharpe'] = {'buy_and_hold': b_sharpe} for p in periods: log_perf = TSMStrategy(returns, period=p, shorts=False) perf = np.exp(log_perf.cumsum()) perf_dict['tot_ret'][p] = (perf[-1] - 1) ann = (perf[-1] ** (1/years) - 1) perf_dict['ann_ret'][p] = ann vol = log_perf.std() * np.sqrt(252) perf_dict['sharpe'][p] = (ann - rfr) / vol ax0.plot((perf - 1) * 100, label=f'{p}-Day Mean') ax0.set_ylabel('Returns (%)') ax0.set_xlabel('Date') ax0.set_title('Cumulative Returns') ax0.grid() ax0.legend() _ = [ax1.bar(i, v * 100) for i, v in enumerate(perf_dict['ann_ret'].values())] ax1.set_xticks([i for i, k in enumerate(perf_dict['ann_ret'])]) ax1.set_xticklabels([f'{k}-Day Mean' if type(k) is int else ticker for k in perf_dict['ann_ret'].keys()], rotation=45) ax1.grid() ax1.set_ylabel('Returns (%)') ax1.set_xlabel('Strategy') ax1.set_title('Annual Returns') _ = [ax2.bar(i, v) for i, v in enumerate(perf_dict['sharpe'].values())] ax2.set_xticks([i for i, k in enumerate(perf_dict['sharpe'])]) ax2.set_xticklabels([f'{k}-Day Mean' if type(k) is int else ticker for k in perf_dict['sharpe'].keys()], rotation=45) ax2.grid() ax2.set_ylabel('Sharpe Ratio') ax2.set_xlabel('Strategy') ax2.set_title('Sharpe Ratio') plt.tight_layout() plt.show()
通过图表的结果,我们可以看到15天的动量指标提供了最好的结果。但是,其他时间周期的结果是五花八门的。这表明我们这个策略并不可靠。所以我们还可以通过在接近顶部时使用止损或追踪止损来退出交易,而不是在15日线图下跌或持平时再进行操作。
投资组合分析
到目前为止,我们已经用Python创建了一个交易策略。下面我们将度量并绘制常见的投资组合特征方便我们进行观察分析。
投资组合分析
首先,我们将导入一些重要的库,并观察数据执行情况。
import pandas_datareader.data as web stocks = ['SPY','GLD','TLT','HYG'] data = web.DataReader(stocks,data_source='yahoo',start='01/01/2019')['Adj Close'] data.sort_index(ascending=True,inplace=True) perf = data.calc_stats() perf.plot()
对数回报
对数回报用于计算指数增长率。我们不计算每个子时期的价格变化百分比,而是计算那段时间的自然增长指数。首先创建一个df,其中包含数据中每个股票价格的对数回报,然后我们为每个对数回报创建一个直方图。
returns = data.to_log_returns().dropna() print(returns.head()) Symbols SPY GLD TLT HYG Date 2019-01-03 -0.024152 0.009025 0.011315 0.000494 2019-01-04 0.032947 -0.008119 -0.011642 0.016644 2019-01-07 0.007854 0.003453 -0.002953 0.009663 2019-01-08 0.009351 -0.002712 -0.002631 0.006470 2019-01-09 0.004663 0.006398 -0.001566 0.001193
直方图如下:
ax = returns.hist(figsize=(20, 10),bins=30)
所有四个资产类别都显示正态分布的直方图。具有正态分布的样本具有算术平均值和高于和低于平均值的均等分布(正态分布也称为高斯分布是对称的) 。如果回报呈正态分布,预计超过 99% 的回报将落在平均值的三个标准差范围内。这些钟形正态分布特征使分析师和投资者能够对股票的预期收益和风险进行更好的统计推断。具有钟形曲线的股票通常是波动率低且可预测的蓝筹股(Blue Chips)。
最大回撤率 DRAWDOWN
DRAWDOWN是指价值下降到一个相对的低谷。这是投资者需要考虑的一个重要风险因素。让我们画一个递减策略的可视化表示。
ffn.to_drawdown_series(data).plot(figsize=(15,10))
这四种资产在2020年上半年都出现了下降,其中SPY的降幅最大,为0.5%。随后,在2020年上半年,所有资产立即复苏。这表明资产回收率很高。这些资产在2020年7月前后见顶。按照这种趋势,一旦复苏达到顶峰,所有资产类别都出现小幅下跌。根据结果TLT将在2022年下半年经历最大的0.5%的下降,然后在2023年初之前恢复。
MARKOWITZ 均值-方差优化
1952年,马科维茨(MARKOWITZ)提出均值-方差投资组合理论,又称现代投资组合理论。投资者可以使用这些概念来构建基于给定风险水平的最大化预期回报的投资组合。基于马科维茨方法,我们可以生成“最优投资组合”。
returns.calc_mean_var_weights().as_format('.2%') #结果 SPY 46.60% GLD 53.40% TLT 0.00% HYG 0.00% dtype: object
相关性统计
相关性是一种统计方法,用来衡量证券之间的相互关系。最好使用热图来查看这些信息。热图可以让我们看到证券之间的相关性。
returns.plot_corr_heatmap()
最好在你的投资组合中拥有相关性较低的资产。除了SPY与HYG,这四个资产类别的相关性都很低,这对我们的投资组合是不利的:因为如果拥有高度相关的不同资产组,即使你将风险分散在它们之间,从投资组合构建的角度来看,收益也会很少。
总结
通过分析和绘制的所有数据进行资产配置,可以建立一个投资组合,极大地改变基础投资的风险特征。还有很多我没有提到的,但可以帮助我们确定交易策略价值的起点。我们将在后续文章中添加更多的技术性能指标。
以上是使用Python进行交易策略和投资组合分析的详细内容。更多信息请关注PHP中文网其他相关文章!

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

WebStorm Mac版
好用的JavaScript开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能