1. 算术运算表达式求值
要解析这类文本,需要另外一种特定的语法规则。我们这里介绍可以表示上下文无关文法(context free grammer)的语法规则巴科斯范式(BNF)和扩展巴科斯范式(EBNF)。从小到一个算术运算表达式,到大到几乎所有程序设计语言,都是利用上下文无关文法来定义的。
对于简单的算术运算表达式,假定我们已经用分词技术将其转化为输入的tokens流,如NUM+NUM*NUM
(分词方法参见上一篇博文)。
在此基础上,我们定义BNF规则定义如下:
expr ::= expr + term | expr - term | term term ::= term * factor | term / factor | factor factor ::= (expr) | NUM
当然,这种计法还不够简洁明了,我们实际采用的为EBNF形式:
expr ::= term { (+|-) term }* term ::= factor { (*|/) factor }* factor ::= (expr) | NUM
BNF和EBNF每一条规则(形如::=的式子)都可以看做是一种替换,即左侧的符号可以被右侧的符号所替换。我们在解析过程中尝试使用BNF/EBNF将输入文本与语法规则进行匹配,以完成各种替换和扩展。在EBNF中,被放置在{...}*内的规则是可选的,而*则表示可以重复零次或多次(类比于正则表达式)。
下图形象地展示了递归下降解析器(parser)中“递归”和“下降”部分和ENBF的关系:
在实际的解析过程中,我们对tokens流从左到右进行扫描,在扫描的过程中处理token,如果卡住就产生一个语法错误。每一条语法规则都被转化为一个函数或方法,例如上面的ENBF规则被转换成下述方法:
class ExpressionEvaluator(): ... def expr(self): ... def term(self): ... def factor(self): ...
在调用某个规则对应方法的过程中,如果我们发现接下来的符号需要采用另一个规则来匹配,则我们就会“下降”到另一个规则方法(如在expr中调用term,term中调用factor),则也就是递归下降中“下降”的部分。
有时也会调用已经在执行的方法(比如在expr中调用term,term中调用factor后,又在factor中调用expr,相当于一条衔尾蛇),这也就是递归下降中“递归”的部分。
对于语法中出现的重复部分(例如expr ::= term { (+|-) term }*
),我们则通过while循环来实现。
下面我们来看具体的代码实现。首先是分词部分,我们参照上一篇介绍分词博客的代码。
import re import collections # 定义匹配token的模式 NUM = r'(?P<NUM>\d+)' # \d表示匹配数字,+表示任意长度 PLUS = r'(?P<PLUS>\+)' # 注意转义 MINUS = r'(?P<MINUS>-)' TIMES = r'(?P<TIMES>\*)' # 注意转义 DIVIDE = r'(?P<DIVIDE>/)' LPAREN = r'(?P<LPAREN>\()' # 注意转义 RPAREN = r'(?P<RPAREN>\))' # 注意转义 WS = r'(?P<WS>\s+)' # 别忘记空格,\s表示空格,+表示任意长度 master_pat = re.compile( '|'.join([NUM, PLUS, MINUS, TIMES, DIVIDE, LPAREN, RPAREN, WS])) # Tokenizer Token = collections.namedtuple('Token', ['type', 'value']) def generate_tokens(text): scanner = master_pat.scanner(text) for m in iter(scanner.match, None): tok = Token(m.lastgroup, m.group()) if tok.type != 'WS': # 过滤掉空格符 yield tok
下面是表达式求值器的具体实现:
class ExpressionEvaluator(): """ 递归下降的Parser实现,每个语法规则都对应一个方法, 使用 ._accept()方法来测试并接受当前处理的token,不匹配不报错, 使用 ._except()方法来测试当前处理的token,并在不匹配的时候抛出语法错误 """ def parse(self, text): """ 对外调用的接口 """ self.tokens = generate_tokens(text) self.tok, self.next_tok = None, None # 已匹配的最后一个token,下一个即将匹配的token self._next() # 转到下一个token return self.expr() # 开始递归 def _next(self): """ 转到下一个token """ self.tok, self.next_tok = self.next_tok, next(self.tokens, None) def _accept(self, tok_type): """ 如果下一个token与tok_type匹配,则转到下一个token """ if self.next_tok and self.next_tok.type == tok_type: self._next() return True else: return False def _except(self, tok_type): """ 检查是否匹配,如果不匹配则抛出异常 """ if not self._accept(tok_type): raise SyntaxError("Excepted"+tok_type) # 接下来是语法规则,每个语法规则对应一个方法 def expr(self): """ 对应规则: expression ::= term { ('+'|'-') term }* """ exprval = self.term() # 取第一项 while self._accept("PLUS") or self._accept("DIVIDE"): # 如果下一项是"+"或"-" op = self.tok.type # 再取下一项,即运算符右值 right = self.term() if op == "PLUS": exprval += right elif op == "MINUS": exprval -= right return exprval def term(self): """ 对应规则: term ::= factor { ('*'|'/') factor }* """ termval = self.factor() # 取第一项 while self._accept("TIMES") or self._accept("DIVIDE"): # 如果下一项是"+"或"-" op = self.tok.type # 再取下一项,即运算符右值 right = self.factor() if op == "TIMES": termval *= right elif op == "DIVIDE": termval /= right return termval def factor(self): """ 对应规则: factor ::= NUM | ( expr ) """ if self._accept("NUM"): # 递归出口 return int(self.tok.value) elif self._accept("LPAREN"): exprval = self.expr() # 继续递归下去求表达式值 self._except("RPAREN") # 别忘记检查是否有右括号,没有则抛出异常 return exprval else: raise SyntaxError("Expected NUMBER or LPAREN")
我们输入以下表达式进行测试:
e = ExpressionEvaluator() print(e.parse("2")) print(e.parse("2+3")) print(e.parse("2+3*4")) print(e.parse("2+(3+4)*5"))
求值结果如下:
2
5
14
37
如果我们输入的文本不符合语法规则:
print(e.parse("2 + (3 + * 4)"))
则会抛出SyntaxError异常:Expected NUMBER or LPAREN
。
综上,可见我们的表达式求值算法运行正确。
2. 生成表达式树
上面我们是得到表达式的结果,但是如果我们想分析表达式的结构,生成一棵简单的表达式解析树呢?那么我们需要对上述类的方法做一定修改:
class ExpressionTreeBuilder(ExpressionEvaluator): def expr(self): """ 对应规则: expression ::= term { ('+'|'-') term }* """ exprval = self.term() # 取第一项 while self._accept("PLUS") or self._accept("DIVIDE"): # 如果下一项是"+"或"-" op = self.tok.type # 再取下一项,即运算符右值 right = self.term() if op == "PLUS": exprval = ('+', exprval, right) elif op == "MINUS": exprval -= ('-', exprval, right) return exprval def term(self): """ 对应规则: term ::= factor { ('*'|'/') factor }* """ termval = self.factor() # 取第一项 while self._accept("TIMES") or self._accept("DIVIDE"): # 如果下一项是"+"或"-" op = self.tok.type # 再取下一项,即运算符右值 right = self.factor() if op == "TIMES": termval = ('*', termval, right) elif op == "DIVIDE": termval = ('/', termval, right) return termval def factor(self): """ 对应规则: factor ::= NUM | ( expr ) """ if self._accept("NUM"): # 递归出口 return int(self.tok.value) # 字符串转整形 elif self._accept("LPAREN"): exprval = self.expr() # 继续递归下去求表达式值 self._except("RPAREN") # 别忘记检查是否有右括号,没有则抛出异常 return exprval else: raise SyntaxError("Expected NUMBER or LPAREN")
输入下列表达式测试一下:
print(e.parse("2+3")) print(e.parse("2+3*4")) print(e.parse("2+(3+4)*5")) print(e.parse('2+3+4'))
以下是生成结果:
('+', 2, 3)
('+', 2, ('*', 3, 4))
('+', 2, ('*', ('+', 3, 4), 5))
('+', ('+', 2, 3), 4)
可以看到表达式树生成正确。
我们上面的这个例子非常简单,但递归下降的解析器也可以用来实现相当复杂的解析器,例如Python代码就是通过一个递归下降解析器解析的。您要是对此跟感兴趣可以检查Python源码中的Grammar
文件来一探究竟。然而,下面我们接着会看到,自己动手写一个解析器会面对各种陷阱和挑战。
左递归和运算符优先级陷阱
任何涉及左递归形式的语法规则,都没法用递归下降parser来解决。所谓左递归,即规则式子右侧最左边的符号是规则头,比如对于以下规则:
items ::= items ',' item | item
完成该解析你可能会定义以下方法:
def items(self): itemsval = self.items() # 取第一项,然而此处会无穷递归! if itemsval and self._accept(','): itemsval.append(self.item()) else: itemsval = [self.item()]
这样做会在第一行就无穷地调用self.items()
从而产生无穷递归错误。
还有一种是语法规则自身的错误,比如运算符优先级。我们如果忽视运算符优先级直接将表达式简化如下:
expr ::= factor { ('+'|'-'|'*'|'/') factor }* factor ::= '(' expr ')' | NUM
PYTHON 复制 全屏
这个语法从技术上可以实现,但是没有遵守计算顺序约定,导致"3+4*5"的运算结果为35,而不是预期的23。因此,需要使用单独的expr和term规则来确保计算结果的正确性。
以上是Python递归下降Parser怎么实现的详细内容。更多信息请关注PHP中文网其他相关文章!

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

记事本++7.3.1
好用且免费的代码编辑器

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),