常规的Excel数据处理中,就是对Excel数据文件的读/写/文件对象操作。
通过对应的python非标准库xlrd/xlwt/xlutils,来实现具体的数据处理业务逻辑。
在复杂的Excel业务数据处理中,三兄弟扮演的角色缺一不可。今天我们的内容是关于如何采用xlrd/xlwt/xlutils三个模块来实现数据处理。
1、模块说明
使用该三个模块来处理Excel数据最好的地方就是他们和Excel文件对象对应的数据处理概念是一样的,能更好的便于我们理解数据对象。
首先,这三个模块都是python的非标准库,可以选择pip的方式来进行安装。
pip install xlrd pip install xlwt pip install xlutils
下面是我们为演示数据处理的过程准备的源数据内容,只是用于测试。
xlrd:用于读取Excle数据文件将返回的数据对象放到内存中,然后查询数据文件对象的相关信息。
xlwt:用于在内存中生成新的数据文件对象,处理完成后写入到Excel数据文件中。
xlutils:主要的作用就是copy新的文件对象,在新的数据对象中完成数据处理操作。
将xlrd/xlwt/xlutils三个模块分别都导入到待开发的代码块中提供支持。
# Importing the xlrd module. import xlrd as read # Importing the xlwt module. import xlwt as write # Copying the contents of the original workbook into a new workbook. from xlutils.copy import copy
2、xlrd处理
# Opening the workbook and assigning it to the variable `work_book`. work_book = read.open_workbook('D:/test-data-work/test.xls') # Assigning the sheet named 'Sheet1' to the variable `sheet`. sheet = work_book.sheet_by_name('Sheet1') # `row = sheet.nrows` is assigning the number of rows in the sheet to the variable `row`. row = sheet.nrows # `col = sheet.ncols` is assigning the number of columns in the sheet to the variable `col`. col = sheet.ncols print('Sheet1工作表有:{0}行,{1}列'.format(str(row), str(col))) # Sheet1工作表有:23行,5列
下面是三种常用的sheet对象的数据遍历方式,分别是按行/列的方式进行数据遍历。
for a in sheet.get_rows(): print(a) # [text:'姓名', text:'年龄', text:'班级', text:'成绩', text:'表现'] # [text:'Python 集中营', number:20.0, number:1210.0, number:90.0, text:'A'] # [text:'Python 集中营', number:21.0, number:1211.0, number:91.0, text:'A'] # [text:'Python 集中营', number:22.0, number:1212.0, number:92.0, text:'A'] # [text:'Python 集中营', number:23.0, number:1213.0, number:93.0, text:'A'] # [text:'Python 集中营', number:24.0, number:1214.0, number:94.0, text:'A'] # [text:'Python 集中营', number:25.0, number:1215.0, number:95.0, text:'A'] # [text:'Python 集中营', number:26.0, number:1216.0, number:96.0, text:'A'] # [text:'Python 集中营', number:27.0, number:1217.0, number:97.0, text:'A'] # [text:'Python 集中营', number:28.0, number:1218.0, number:98.0, text:'A'] # [text:'Python 集中营', number:29.0, number:1219.0, number:99.0, text:'A'] # [text:'Python 集中营', number:30.0, number:1220.0, number:100.0, text:'A'] # [text:'Python 集中营', number:31.0, number:1221.0, number:101.0, text:'A'] # [text:'Python 集中营', number:32.0, number:1222.0, number:102.0, text:'A'] # [text:'Python 集中营', number:33.0, number:1223.0, number:103.0, text:'A'] # [text:'Python 集中营', number:34.0, number:1224.0, number:104.0, text:'A'] # [text:'Python 集中营', number:35.0, number:1225.0, number:105.0, text:'A'] # [text:'Python 集中营', number:36.0, number:1226.0, number:106.0, text:'A'] # [text:'Python 集中营', number:37.0, number:1227.0, number:107.0, text:'A'] # [text:'Python 集中营', number:38.0, number:1228.0, number:108.0, text:'A'] # [text:'Python 集中营', number:39.0, number:1229.0, number:109.0, text:'A'] # [text:'Python 集中营', number:40.0, number:1230.0, number:110.0, text:'A'] # [text:'Python 集中营', number:41.0, number:1231.0, number:111.0, text:'A'] for b in range(row): print(sheet.row_values(b)) # ['姓名', '年龄', '班级', '成绩', '表现'] # ['Python 集中营', 20.0, 1210.0, 90.0, 'A'] # ['Python 集中营', 21.0, 1211.0, 91.0, 'A'] # ['Python 集中营', 22.0, 1212.0, 92.0, 'A'] # ['Python 集中营', 23.0, 1213.0, 93.0, 'A'] # ['Python 集中营', 24.0, 1214.0, 94.0, 'A'] # ['Python 集中营', 25.0, 1215.0, 95.0, 'A'] # ['Python 集中营', 26.0, 1216.0, 96.0, 'A'] # ['Python 集中营', 27.0, 1217.0, 97.0, 'A'] # ['Python 集中营', 28.0, 1218.0, 98.0, 'A'] # ['Python 集中营', 29.0, 1219.0, 99.0, 'A'] # ['Python 集中营', 30.0, 1220.0, 100.0, 'A'] # ['Python 集中营', 31.0, 1221.0, 101.0, 'A'] # ['Python 集中营', 32.0, 1222.0, 102.0, 'A'] # ['Python 集中营', 33.0, 1223.0, 103.0, 'A'] # ['Python 集中营', 34.0, 1224.0, 104.0, 'A'] # ['Python 集中营', 35.0, 1225.0, 105.0, 'A'] # ['Python 集中营', 36.0, 1226.0, 106.0, 'A'] # ['Python 集中营', 37.0, 1227.0, 107.0, 'A'] # ['Python 集中营', 38.0, 1228.0, 108.0, 'A'] # ['Python 集中营', 39.0, 1229.0, 109.0, 'A'] # ['Python 集中营', 40.0, 1230.0, 110.0, 'A'] # ['Python 集中营', 41.0, 1231.0, 111.0, 'A'] for c in range(col): print(sheet.col_values(c)) # ['姓名', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营'] # ['年龄', 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0] # ['班级', 1210.0, 1211.0, 1212.0, 1213.0, 1214.0, 1215.0, 1216.0, 1217.0, 1218.0, 1219.0, 1220.0, 1221.0, 1222.0, 1223.0, 1224.0, 1225.0, 1226.0, 1227.0, 1228.0, 1229.0, 1230.0, 1231.0] # ['成绩', 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0, 101.0, 102.0, 103.0, 104.0, 105.0, 106.0, 107.0, 108.0, 109.0, 110.0, 111.0] # ['表现', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A']
3、xlwt处理
# Creating a new workbook. work_book_2 = write.Workbook() # Creating a new sheet named 'Sheet4' in the workbook. sheet_2 = work_book_2.add_sheet('Sheet4') list = [ ['姓名', '年龄', '班级', '成绩'], ['张三', '20', '1210', '89'], ['李四', '21', '1211', '90'], ['王五', '22', '1212', '91'], ] for row_index in range(4): for col_index in range(4): sheet_2.write(row_index, col_index, list[row_index][col_index]) col_index += 1 row_index += 1 # Saving the workbook to the specified location. work_book_2.save('D:/test-data-work/test2.xls')
4、xlutils处理
# Opening the workbook and assigning it to the variable `work_book_3`. work_book_3 = read.open_workbook('D:/test-data-work/test.xls') # Copying the contents of the original workbook into a new workbook. work_book_3_copy = copy(work_book_3) # Saving the contents of the original workbook into a new workbook. work_book_3_copy.save('D:/test-data-work/test3.xls')
以上是Python Excel数据处理之xlrd/xlwt/xlutils模块怎么使用的详细内容。更多信息请关注PHP中文网其他相关文章!

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

Dreamweaver Mac版
视觉化网页开发工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),