Python 标准库有超过 200 个模块,程序员可以在他们的程序中导入和使用。虽然普通程序员对其中许多模块都有一些经验,但很可能有一些好用的模块他们仍然没有注意到。
我发现其中许多模块都包含了在各个领域都非常有用的函数。比较数据集、协作其他函数以及音频处理等都可以仅使用 Python 就可以自动完成。
因此,我编制了一份您可能不知道的 Python 模块的候选清单,并对这几个模块进行了适当的解释,以便您在将来理解和使用它们。
所有这些模块都有不同的函数和类。我包含了几个鲜为人知的函数和类,因此即使您听说过这些模块,也可能不知道它们的某些方面和用途。
1. difflib
difflib
是一个专注于比较数据集(尤其是字符串)的 Python 模块。为了具体了解您可以使用此模块完成的几件事,让我们检查一下它的一些最常见的函数。
SequenceMatcher
SequenceMatcher
是一个比较两个字符串并根据它们的相似性返回数据的函数。通过使用 ratio()
,我们将能够根据比率/百分比来量化这种相似性。
语法:
SequenceMatcher(None, string1, string2)
下面这个个简单的例子展示了该函数的作用:
from difflib import SequenceMatcher phrase1 = "Tandrew loves Trees." phrase2 = "Tandrew loves to mount Trees." similarity = SequenceMatcher(None, phrase1, phrase2) print(similarity.ratio()) # Output: 0.8163265306122449
get_close_matches
接下来是 get_close_matches
,该函数返回与作为参数传入的字符串最接近的匹配项。
语法:
get_close_matches(word, possibilities, result_limit, min_similarity)
下面解释一下这些可能有些混乱的参数:
-
word
是函数将要查看的目标单词。 -
possibilities
是一个数组,其中包含函数将要查找的匹配项并找到最接近的匹配项。 -
result_limit
是返回结果数量的限制(可选)。 -
min_similarity
是两个单词需要具有的最小相似度才能被函数视为返回值(可选)。
下面是它的一个使用示例:
from difflib import get_close_matches word = 'Tandrew' possibilities = ['Andrew', 'Teresa', 'Kairu', 'Janderson', 'Drew'] print(get_close_matches(word, possibilities)) # Output: ['Andrew']
除此之外还有几个是您可以查看的属于 Difflib
的其他一些方法和类:unified_diff
、Differ
和 diff_bytes
2. sched
sched
是一个有用的模块,它以跨平台工作的事件调度为中心,与 Windows 上的任务调度程序等工具形成鲜明对比。大多数情况下,使用此模块时,都会使用 schedular
类。
更常见的 time
模块通常与 sched
一起使用,因为它们都处理时间和调度的概念。
创建一个 schedular
实例:
schedular_name = sched.schedular(time.time, time.sleep)
可以从这个实例中调用各种方法。
- 事件执行的时间
- 活动优先级
- 事件本身(一个函数)
- 事件函数的参数
- 事件的关键字参数字典
- 调用
run()
时,调度程序中的事件/条目会按照顺序被调用。在安排完事件后,此函数通常出现在程序的最后。 -
enterabs()
是一个函数,它本质上将事件添加到调度程序的内部队列中。它按以下顺序接收几个参数:
下面是一个示例,说明如何一起使用这两个函数:
import sched import time def event_notification(event_name): print(event_name + " has started") my_schedular = sched.scheduler(time.time, time.sleep) closing_ceremony = my_schedular.enterabs(time.time(), 1, event_notification, ("The Closing Ceremony", )) my_schedular.run() # Output: The Closing Ceremony has started
还有几个扩展 sched
模块用途的函数:cancel()
、enter()
和 empty()
。
3. binaascii
binaascii
是一个用于在二进制和 ASCII 之间转换的模块。
b2a_base64
是 binaascii
模块中的一种方法,它将 base64 数据转换为二进制数据。下面是这个方法的一个例子:
import base64 import binascii msg = "Tandrew" encoded = msg.encode('ascii') base64_msg = base64.b64encode(encoded) decode = binascii.a2b_base64(base64_msg) print(decode) # Output: b'Tandrew'
该段代码应该是不言自明的。简单地说,它涉及编码、转换为 base64,以及使用 b2a_base64
方法将其转换回二进制。
以下是属于 binaascii
模块的其他一些函数:a2b_qp()
、b2a_qp()
和 a2b_uu()
。
4. tty
tty
是一个包含多个实用函数的模块,可用于处理 tty
设备。以下是它的两个函数:
-
setraw()
将其参数 (fd) 中文件描述符的模式更改为 raw。 -
setcbreak()
将其参数 (fd) 中的文件描述符的模式更改为 cbreak。
由于需要使用 termios
模块,该模块仅适用于 Unix,例如在上述两个函数中指定第二个参数(when=termios.TCSAFLUSH
)。
5. weakref
weakref
是一个用于在 Python 中创建对对象的弱引用的模块。
弱引用是不保护给定对象不被垃圾回收机制收集的引用。
以下是与该模块相关的两个函数:
-
getweakrefcount()
接受一个对象作为参数,并返回引用该对象的弱引用的数量。 -
getweakrefs()
接受一个对象并返回一个数组,其中包含引用该对象的所有弱引用。
weakref
及其函数的使用示例:
import weakref class Book: def print_type(self): print("Book") lotr = Book num = 1 rcount_lotr = str(weakref.getweakrefcount(lotr)) rcount_num = str(weakref.getweakrefcount(num)) rlist_lotr = str(weakref.getweakrefs(lotr)) rlist_num = str(weakref.getweakrefs(num)) print("number of weakrefs of 'lotr': " + rcount_lotr) print("number of weakrefs of 'num': " + rcount_num) print("Weakrefs of 'lotr': " + rlist_lotr) print("Weakrefs of 'num': " + rlist_num) # Output: # number of weakrefs of 'lotr': 1 # number of weakrefs of 'num': 0 # Weakrefs of 'lotr': [<weakref at 0x10b978a90; to 'type' at #0x7fb7755069f0 (Book)>] # Weakrefs of 'num': []
输出从输出的函数返回值我们可以看到它的作用。由于 num
没有弱引用,因此 getweakrefs()
返回的数组为空。
以下是与 weakref
模块相关的一些其他函数:ref()
、proxy()
和 _remove_dead_weakref()
。
回顾
-
Difflib
是一个用于比较数据集,尤其是字符串的模块。例如,SequenceMatcher
可以比较两个字符串并根据它们的相似性返回数据。 -
sched
是与time
模块一起使用的有用工具,用于使用schedular
实例安排事件(以函数的形式)。例如,enterabs()
将一个事件添加到调度程序的内部队列中,该队列将在调用run()
函数时运行。
binaascii
可在二进制和 ASCII 之间转换以编码和解码数据。b2a_base64
是 binaascii
模块中的一种方法,它将 base64 数据转换为二进制数据。
tty
模块需要配合使用 termios
模块,并处理 tty 设备。它仅适用于 Unix。
weakref
用于弱引用。它的函数可以返回对象的弱引用,查找对象的弱引用数量等。其中非常使用的函数之一是 getweakrefs()
,它接受一个对象并返回一个该对象包含的所有弱引用的数组。
要点
这些函数中的每一个都有其各自的用途,每一个都有不同程度的有用性。了解尽可能多的 Python 函数和模块非常重要,以便保持稳定的工具库,您可以在编写代码时快速使用。
无论您的编程专业知识水平如何,您都应该不断学习。多投入一点时间可以为您带来更多价值,并为您节省更多未来时间。
以上是你可能不知道的五个实用的 Python 模块的详细内容。更多信息请关注PHP中文网其他相关文章!

Inpython,YouAppendElementStoAlistusingTheAppend()方法。1)useappend()forsingleelements:my_list.append(4).2)useextend()orextend()或= formultiplelements:my_list.extend.extend(emote_list)ormy_list = [4,5,6] .3)useInsert()forspefificpositions:my_list.insert(1,5).beaware

调试shebang问题的方法包括:1.检查shebang行确保是脚本首行且无前置空格;2.验证解释器路径是否正确;3.直接调用解释器运行脚本以隔离shebang问题;4.使用strace或truss跟踪系统调用;5.检查环境变量对shebang的影响。

pythonlistscanbemanipulationusesseveralmethodstoremovelements:1)theremove()MethodRemovestHefirStocCurrenceOfAstePecifiedValue.2)thepop()thepop()methodremovesandremovesandurturnturnsananelementatagivenIndex.3)

pythristssupportnumereperations:1)addingElementSwithAppend(),Extend(),andInsert()。2)emovingItemSusingRemove(),pop(),andclear(),and clear()。3)访问andmodifyingandmodifyingwithIndexingAndexingAndSlicing.4)

使用NumPy创建多维数组可以通过以下步骤实现:1)使用numpy.array()函数创建数组,例如np.array([[1,2,3],[4,5,6]])创建2D数组;2)使用np.zeros(),np.ones(),np.random.random()等函数创建特定值填充的数组;3)理解数组的shape和size属性,确保子数组长度一致,避免错误;4)使用np.reshape()函数改变数组形状;5)注意内存使用,确保代码清晰高效。

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增强可读性,和Boostsperformance.Shere'shore'showitworks:1)较小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载
最流行的的开源编辑器

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

禅工作室 13.0.1
功能强大的PHP集成开发环境

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能