搜索
首页后端开发Python教程python怎么绘制世界人口地图

python怎么绘制世界人口地图

May 14, 2023 pm 03:22 PM
python

前言

数据来源:population_data.json,

先看一下数据长啥样

[
  {
    "Country Name": "Arab World",
    "Country Code": "ARB",
    "Year": "1960",
    "Value": "96388069"
  },
  {
    "Country Name": "Arab World",
    "Country Code": "ARB",
    "Year": "1961",
    "Value": "98882541.4"
  },
省略。。。。
]

'''这个文件实际上就是一个很长的Python列表,其中每个元素都是一个包含四个键的字典:
国家名、国别码、年份以及表示人口数量的值。

我们只关心每个国家2010年的人口数量,因此我们首先编写一个打印这些信息的程序:'''

import json
#将数据加载到一个列表中
filename= 'population_data.json'
with open(filename) as f :
    pop_data = json.load(f)
#打印每个国家2010年的人口数量
for pop_dic in pop_data :
     if pop_dic["Year"] == '2010' :
         country_name= pop_dic['Country Name']
         population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int():
         print(country_name + ":" + str(population))
rab World:357868000
Caribbean small states:6880000
East Asia & Pacific (all income levels):2201536674
East Asia & Pacific (developing only):1961558757
Euro area:331766000
Europe & Central Asia (all income levels):890424544
Europe & Central Asia (developing only):405204000

获取两个字母的国别码

'''制作地图前,还需要解决数据存在的最后一个问题。Pygal中的地图制作工具要求数据为特定的格式:用国别码表示国家,以及用数字表示人口数量。处理地理政治数据时,经常需要用到几个标准化国别码集。

population_data.json中包含的是三个字母的国别码,但Pygal使用两个字母的国别码。我们需要想办法根据国家名获取两个字母的国别码。

Pygal使用的国别码存储在模块i18n(internationalization的缩写)中。

字典COUNTRIES包含的键和值分别为两个字母的国别码和国家名。

要查看这些国别码,可从模块i18n中导入这个字典,并打印其键和值:'''

from pygal_maps_world.i18n import COUNTRIES
for country_code in sorted(COUNTRIES.keys()):
    print(country_code, COUNTRIES[country_code])
ad Andorra
ae United Arab Emirates
af Afghanistan
al Albania

为获取国别码,我们将编写一个函数,它在COUNTRIES中查找并返回国别码。

我们将这个函数放在一个名为country_codes的模块中,以便能够在可视化程序中导入它:

from pygal_maps_world.i18n import COUNTRIES
def get_country_code(country_name):
    #根据指定的国家,返回Pygal使用的两个字母的国别码
    for code,name in COUNTRIES.items():
        if name == country_name :
            return code
    # 如果没有找到指定的国家,就返回None
    return None
#打印每个国家2010年的人口数量
for pop_dic in pop_data :
     if pop_dic["Year"] == '2010' :
         country_name= pop_dic['Country Name']
         population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int():
         code =  get_country_code(country_name)
         if code :
             print(code + ":" + str(population))
         else:
            print('error - ' + ":" + str(population))
error - :357868000
error - :6880000
error - :2201536674
error - :1961558757
error - :331766000

导致显示错误消息的原因有两个。首先,并非所有人口数量对应的都是国家,有些人口数量对应的是地区(阿拉伯世界)和经济类群(所有收入水平)。

其次,有些统计数据使用了不同的完整国家名(如Yemen, Rep.,而不是Yemen)。当前,我们将忽略导致错误的数据,看看根据成功恢复了的数据制作出的地图是什么样的。

制作世界地图

import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性
wm = pygal_maps_world.maps.World()
wm.title = 'North, Central, and South America'
'''
了方法add(),它接受一个标签和一个列表,其中后者包含我们要突出的国家的国别码。每次调用add()都将为指定的国家
选择一种新颜色,并在图表左边显示该颜色和指定的标签。我们要以同一种颜色显示整个北美地区,因此第一次调用add()
时,在传递给它的列表中包含'ca'、'mx'和'us',以同时突出加拿大、墨西哥和美国。接下来,对中美和南美国家做同样
的处理。
'''
wm.add('North America', ['ca', 'mx', 'us'])
wm.add('Central America', ['bz', 'cr', 'gt', 'hn', 'ni', 'pa', 'sv'])
wm.add('South America', ['ar', 'bo', 'br', 'cl', 'co', 'ec', 'gf',
'gy', 'pe', 'py', 'sr', 'uy', 've'])
'''
方法render_to_file()创建一个包含该图表的.svg文件,你可以在浏览器中打开它。输出是一幅以不同颜色突出北美、
中美和南美的地图
'''
wm.render_to_file('americas.svg')

python怎么绘制世界人口地图

绘制完整的世界人口地图

'''要呈现其他国家的人口数量,需要将前面处理的数据转换为Pygal要求的字典格式:键为两个字母的国别码,值为人口数量。

为此,在world_population.py中添加如下代码:

import  json

#将数据加载到一个列表中
filename= 'population_data.json'
with open(filename) as f :
    pop_data = json.load(f)
def get_country_code(country_name):
    #根据指定的国家,返回Pygal使用的两个字母的国别码
    for code,name in COUNTRIES.items():
        if name == country_name :
            return code
    # 如果没有找到指定的国家,就返回None
    return None
#创建一个包含人口数量是字典
cc_populations = {}
#打印每个国家2010年的人口数量
for pop_dic in pop_data :
     if pop_dic["Year"] == '2010' :
         country_name= pop_dic['Country Name']
         population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int():
         code =  get_country_code(country_name)
         if code :
            cc_populations[code] =  population
import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性
wm = pygal_maps_world.maps.World()
wm.title = 'world population in 2010, by country'
wm.add('2010', cc_populations)
wm.render_to_file('world_population.svg')

python怎么绘制世界人口地图

根据人口数量将国家分组

import json
#将数据加载到一个列表中
filename= 'population_data.json'
with open(filename) as f :
    pop_data = json.load(f)
def get_country_code(country_name):
    #根据指定的国家,返回Pygal使用的两个字母的国别码
    for code,name in COUNTRIES.items():
        if name == country_name :
            return code
    # 如果没有找到指定的国家,就返回None
    return None
#创建一个包含人口数量是字典
cc_populations = {}
#打印每个国家2010年的人口数量
for pop_dic in pop_data :
     if pop_dic["Year"] == '2010' :
         country_name= pop_dic['Country Name']
         population =int(float(pop_dic['Value']) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int():
         code =  get_country_code(country_name)
         if code :
            cc_populations[code] =  population
###根据人口数量将国家分3组   
cc_pop_1,cc_pop_2,cc_pop_3 = {},{},{}
for cc,pop in cc_populations.items():
    if pop < 10000000:
        cc_pop_1[cc] = pop
    elif pop < 1000000000:
        cc_pop_2[cc] = pop
    else:
        cc_pop_3[cc] = pop
import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性
wm = pygal_maps_world.maps.World()
wm.title = &#39;world population in 2010, by country&#39;
wm.add(&#39;0-10m&#39;, cc_pop_1)
wm.add(&#39;10m-1bn&#39;, cc_pop_2)
wm.add(&#39;> 1bn&#39;, cc_pop_3)
wm.render_to_file(&#39;world_population.svg&#39;)

python怎么绘制世界人口地图

根据Pygal设置世界地图的样式

在这个地图中,根据人口将国家分组虽然很有效,但默认的颜色设置很难看。例如,在这里,Pygal选择了鲜艳的粉色和绿色基色。

下面使用Pygal样式设置指令来调整颜色。我们也让Pygal使用一种基色,但将指定该基色,并让三个分组的颜色差别更大

###根据Pygal设置世界地图的样式
&#39;&#39;&#39;
在这个地图中,根据人口将国家分组虽然很有效,但默认的颜色设置很难看。例如,在这里,Pygal选择了鲜艳的粉色
和绿色基色。下面使用Pygal样式设置指令来调整颜色。我们也让Pygal使用一种基色,但将指定该基色,并让三个分组
的颜色差别更大
&#39;&#39;&#39;
###根据人口数量将国家分组
import json
#将数据加载到一个列表中
filename= &#39;population_data.json&#39;
with open(filename) as f :
    pop_data = json.load(f)
def get_country_code(country_name):
    #根据指定的国家,返回Pygal使用的两个字母的国别码
    for code,name in COUNTRIES.items():
        if name == country_name :
            return code
    # 如果没有找到指定的国家,就返回None
    return None
#创建一个包含人口数量是字典
cc_populations = {}
#打印每个国家2010年的人口数量
for pop_dic in pop_data :
     if pop_dic["Year"] == &#39;2010&#39; :
         country_name= pop_dic[&#39;Country Name&#39;]
         population =int(float(pop_dic[&#39;Value&#39;]) )#population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人口数量的字符串转换为数字值,为此我们使用函数int():
         code =  get_country_code(country_name)
         if code :
            cc_populations[code] =  population
###根据人口数量将国家分3组   
cc_pop_1,cc_pop_2,cc_pop_3 = {},{},{}
for cc,pop in cc_populations.items():
    if pop < 10000000:
        cc_pop_1[cc] = pop
    elif pop < 1000000000:
        cc_pop_2[cc] = pop
    else:
        cc_pop_3[cc] = pop
import pygal_maps_world.maps#创建了一个Worldmap实例,并设置了该地图的的title属性
from pygal.style import RotateStyle
from pygal.style import LightColorizedStyle#加亮颜色主题
wm_style = RotateStyle(&#39;#336699&#39;, base_style= LightColorizedStyle)
wm = pygal_maps_world.maps.World(style = wm_style)
wm.title = &#39;world population in 2010, by country&#39;
wm.add(&#39;2010&#39;, cc_populations)
wm.add(&#39;0-10m&#39;, cc_pop_1)
wm.add(&#39;10m-1bn&#39;, cc_pop_2)
wm.add(&#39;> 1bn&#39;, cc_pop_3)
wm.render_to_file(&#39;world_population.svg&#39;)

python怎么绘制世界人口地图

以上是python怎么绘制世界人口地图的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

Python vs. C:内存管理和控制Python vs. C:内存管理和控制Apr 19, 2025 am 12:17 AM

Python和C 在内存管理和控制方面的差异显着。 1.Python使用自动内存管理,基于引用计数和垃圾回收,简化了程序员的工作。 2.C 则要求手动管理内存,提供更多控制权但增加了复杂性和出错风险。选择哪种语言应基于项目需求和团队技术栈。

科学计算的Python:详细的外观科学计算的Python:详细的外观Apr 19, 2025 am 12:15 AM

Python在科学计算中的应用包括数据分析、机器学习、数值模拟和可视化。1.Numpy提供高效的多维数组和数学函数。2.SciPy扩展Numpy功能,提供优化和线性代数工具。3.Pandas用于数据处理和分析。4.Matplotlib用于生成各种图表和可视化结果。

Python和C:找到合适的工具Python和C:找到合适的工具Apr 19, 2025 am 12:04 AM

选择Python还是C 取决于项目需求:1)Python适合快速开发、数据科学和脚本编写,因其简洁语法和丰富库;2)C 适用于需要高性能和底层控制的场景,如系统编程和游戏开发,因其编译型和手动内存管理。

数据科学和机器学习的Python数据科学和机器学习的PythonApr 19, 2025 am 12:02 AM

Python在数据科学和机器学习中的应用广泛,主要依赖于其简洁性和强大的库生态系统。1)Pandas用于数据处理和分析,2)Numpy提供高效的数值计算,3)Scikit-learn用于机器学习模型构建和优化,这些库让Python成为数据科学和机器学习的理想工具。

学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热工具

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

SecLists

SecLists

SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境