搜索
首页后端开发Python教程Python中的数据清洗方法是什么

这里数据清洗需要用到的库是pandas库,下载方式还是在终端运行 : pip install pandas.

首先我们需要对数据进行读取

import pandas as pd
 
data = pd.read_csv(r'E:\PYthon\用户价值分析 RFM模型\data.csv')
pd.set_option('display.max_columns', 888)  # 大于总列数
pd.set_option('display.width', 1000)
print(data.head())
print(data.info())

第3行是对数据进行读取,pandas库里面有读取函数调用即可,csv格式是读取写入速度最快的。

第4,5行是为了读取的实话显示全部的列,是因为很多列的话pycharm会把中间一些列隐藏掉,所以我们这为了他不隐藏就加这两行代码。

第6行是显示表头,我们可以看到有什么字段,列名

第7行是显示表的基本信息,每一列有多少数据,字段是什么类型的数据。非空的数据有多少,所以我们第一步就可以看得到基本那一列有空值了。

Python中的数据清洗方法是什么

空值处理

data.info()后我们可以看到大部分数据都有541909行,所以我们大致猜到是Description ,CustomerID 列漏结果了

# 空值处理
print(data.isnull().sum())  # 空值中和,查看每一列的空值
 
# 空值删除
data.drop(columns=['Description'], inplace=True)
print(data.info())
data.isnull()判断是否为空。data.isnumll().sum()计算空值数量。

第5行进行空值删除,这里先删除Description列的空值,inplace=True意思是对数据进行修改,如果没有inplace=True,则不对data进行修改,打印数据还是和之前一样,或者重新定义一个变量进行赋值。

由于这一列空值数据比较少,这一列数据对我们数据分析没有那么重要,所以我们选择删除这一整列。

我们这个表是对客户进行筛选的,所以以CustomerID为准,强制删除其他列

# CustomerID有空值
# 删除所有列的空值
data.dropna(inplace=True)
# print(data.info())
print(data.isnull().sum())  # 由于CustomerID为必须字段,所以强制删除其他列,以CustomerID为准

这里我们先对其他字段进行类型转换

类型转换

# 转换为日期类型
data['InvoiceDate'] = pd.to_datetime(data['InvoiceDate'])
 
# CustomerID 转换为整型
data['CustomerID'] = data['CustomerID'].astype('int')
print(data.info())

以上我们处理了空值,接下来我们处理异常值。

异常值处理

查看表的基本数据分布可以使用describe

print(data.describe())

可以看到数据Quantity 列中最小值为-80995.这列明显有异常值,所以需要对这一列进行异常值筛选。

只需要大于0的值。

Python中的数据清洗方法是什么

data = data[data['Quantity'] > 0]
print(data)

打印一下就只有397924行了。

重复值处理

# 查看重复值
print(data[data.duplicated()])

Python中的数据清洗方法是什么

有5194行重复值,这里的重复值是完全重复的,所以是没用的数据我们可以进行删除。

删除重复值

# 删除重复值
data.drop_duplicates(inplace=True)
 
print(data.info())

删除后对原来的表进行保存,再去查看一下表的基本信息

Python中的数据清洗方法是什么

现在还剩下392730条数据。数据到这一步就完成了数据清洗。

以上是Python中的数据清洗方法是什么的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境