StreamHandler和FileHandler
首先我们先来写一套简单输出到cmd和文件中的代码:
# -*- coding: utf-8 -*- """ ------------------------------------------------- File Name: loger Description : Author : yangyanxing date: 2020/9/23 ------------------------------------------------- """ import logging import sys import os # 初始化logger logger = logging.getLogger("yyx") logger.setLevel(logging.DEBUG) # 设置日志格式 fmt = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s', '%Y-%m-%d %H:%M:%S') # 添加cmd handler cmd_handler = logging.StreamHandler(sys.stdout) cmd_handler.setLevel(logging.DEBUG) cmd_handler.setFormatter(fmt) # 添加文件的handler logpath = os.path.join(os.getcwd(), 'debug.log') file_handler = logging.FileHandler(logpath) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(fmt) # 将cmd和file handler添加到logger中 logger.addHandler(cmd_handler) logger.addHandler(file_handler) logger.debug("今天天气不错")
先初始化一个logger, 并且设置它的日志级别是DEBUG,然后添初始化了 cmd_handler和 file_handler,最后将它们添加到logger中, 运行脚本,会在cmd中打印出
[2020-09-23 10:45:56] [DEBUG] 今天天气不错
且会写入到当前目录下的debug.log文件中
添加HTTPHandler
如果想要在记录时将日志发送到远程服务器上,可以添加一个 HTTPHandler , 在python标准库logging.handler中,已经为我们定义好了很多handler,有些我们可以直接用,本地使用tornado写一个接收 日志的接口,将接收到的参数全都打印出来
# 添加一个httphandler import logging.handlers http_handler = logging.handlers.HTTPHandler(r"127.0.0.1:1987", '/api/log/get') http_handler.setLevel(logging.DEBUG) http_handler.setFormatter(fmt) logger.addHandler(http_handler) logger.debug("今天天气不错") 结果在服务端我们收到了很多信息 { 'name': [b 'yyx'], 'msg': [b '\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99'], 'args': [b '()'], 'levelname': [b 'DEBUG'], 'levelno': [b '10'], 'pathname': [b 'I:/workplace/yangyanxing/test/loger.py'], 'filename': [b 'loger.py'], 'module': [b 'loger'], 'exc_info': [b 'None'], 'exc_text': [b 'None'], 'stack_info': [b 'None'], 'lineno': [b '41'], 'funcName': [b '<module>'], 'created': [b '1600831054.8881223'], 'msecs': [b '888.1223201751709'], 'relativeCreated': [b '22.99976348876953'], 'thread': [b '14876'], 'threadName': [b 'MainThread'], 'processName': [b 'MainProcess'], 'process': [b '8648'], 'message': [b '\xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99'], 'asctime': [b '2020-09-23 11:17:34'] }
可以说是信息非常之多,但是却并不是我们想要的样子,我们只是想要类似于
[2020-09-23 10:45:56][DEBUG] 今天天气不错
这样的日志
logging.handlers.HTTPHandler 只是简单的将日志所有信息发送给服务端,至于服务端要怎么组织内 容是由服务端来完成. 所以我们可以有两种方法,一种是改服务端代码,根据传过来的日志信息重新组织一 下日志内容, 第二种是我们重新写一个类,让它在发送的时候将重新格式化日志内容发送到服务端。
我们采用第二种方法,因为这种方法比较灵活, 服务端只是用于记录,发送什么内容应该是由客户端来决定。
我们需要重新定义一个类,我们可以参考 logging.handlers.HTTPHandler 这个类,重新写一个httpHandler类
每个日志类都需要重写emit方法,记录日志时真正要执行是也就是这个emit方法:
class CustomHandler(logging.Handler): def __init__(self, host, uri, method="POST"): logging.Handler.__init__(self) self.url = "%s/%s" % (host, uri) method = method.upper() if method not in ["GET", "POST"]: raise ValueError("method must be GET or POST") self.method = method def emit(self, record): ''' 重写emit方法,这里主要是为了把初始化时的baseParam添加进来 :param record: :return: ''' msg = self.format(record) if self.method == "GET": if (self.url.find("?") >= 0): sep = '&' else: sep = '?' url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg})) requests.get(url, timeout=1) else: headers = { "Content-type": "application/x-www-form-urlencoded", "Content-length": str(len(msg)) } requests.post(self.url, data={'log': msg}, headers=headers, timeout=1)
上面代码中有一行定义发送的参数 msg = self.format(record)这行代码表示,将会根据日志对象设置的格式返回对应的内容。
之后再将内容通过requests库进行发送,无论使用get 还是post方式,服务端都可以正常的接收到日志
{'log': [b'[2020-09-23 11:39:45] [DEBUG] \xe4\xbb\x8a\xe5\xa4\xa9\xe5\xa4\xa9\xe6\xb0\x94\xe4\xb8\x8d\xe9\x94\x99']}
将bytes类型转一下就得到了:
[2020-09-23 11:43:50] [DEBUG] 今天天气不错
异步的发送远程日志
现在我们考虑一个问题,当日志发送到远程服务器过程中,如果远程服务器处理的很慢,会耗费一定的时间, 那么这时记录日志就会都变慢修改服务器日志处理类,让其停顿5秒钟,模拟长时间的处理流程
async def post(self): print(self.getParam('log')) await asyncio.sleep(5) self.write({"msg": 'ok'})
此时我们再打印上面的日志:
logger.debug("今天天气不错") logger.debug("是风和日丽的")
得到的输出为:
[2020-09-23 11:47:33] [DEBUG] 今天天气不错
[2020-09-23 11:47:38] [DEBUG] 是风和日丽的
我们注意到,它们的时间间隔也是5秒。
那么现在问题来了,原本只是一个记录日志,现在却成了拖累整个脚本的累赘,所以我们需要异步的来 处理远程写日志。
1使用多线程处理
首先想的是应该是用多线程来执行发送日志方法;
def emit(self, record): msg = self.format(record) if self.method == "GET": if (self.url.find("?") >= 0): sep = '&' else: sep = '?' url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg})) t = threading.Thread(target=requests.get, args=(url,)) t.start() else: headers = { "Content-type": "application/x-www-form-urlencoded", "Content-length": str(len(msg)) } t = threading.Thread(target=requests.post, args=(self.url,), kwargs= {"data":{'log': msg},
这种方法是可以达到不阻塞主目的,但是每打印一条日志就需要开启一个线程,也是挺浪费资源的。我们也 可以使用线程池来处理
2使用线程池处理
python 的 concurrent.futures 中有ThreadPoolExecutor, ProcessPoolExecutor类,是线程池和进程池, 就是在初始化的时候先定义几个线程,之后让这些线程来处理相应的函数,这样不用每次都需要新创建线程
线程池的基本使用:
exector = ThreadPoolExecutor(max_workers=1) # 初始化一个线程池,只有一个线程 exector.submit(fn, args, kwargs) # 将函数submit到线程池中
如果线程池中有n个线程,当提交的task数量大于n时,则多余的task将放到队列中。
再次修改上面的emit函数
exector = ThreadPoolExecutor(max_workers=1) def emit(self, record): msg = self.format(record) timeout = aiohttp.ClientTimeout(total=6) if self.method == "GET": if (self.url.find("?") >= 0): sep = '&' else: sep = '?' url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg})) exector.submit(requests.get, url, timeout=6) else: headers = { "Content-type": "application/x-www-form-urlencoded", "Content-length": str(len(msg)) } exector.submit(requests.post, self.url, data={'log': msg}, headers=headers, timeout=6)
这里为什么要只初始化一个只有一个线程的线程池? 因为这样的话可以保证先进队列里的日志会先被发 送,如果池子中有多个线程,则不一定保证顺序了。
3使用异步aiohttp库来发送请求
上面的CustomHandler类中的emit方法使用的是requests.post来发送日志,这个requests本身是阻塞运 行的,也正上由于它的存在,才使得脚本卡了很长时间,所们我们可以将阻塞运行的requests库替换为异步 的aiohttp来执行get和post方法, 重写一个CustomHandler中的emit方法
class CustomHandler(logging.Handler): def __init__(self, host, uri, method="POST"): logging.Handler.__init__(self) self.url = "%s/%s" % (host, uri) method = method.upper() if method not in ["GET", "POST"]: raise ValueError("method must be GET or POST") self.method = method async def emit(self, record): msg = self.format(record) timeout = aiohttp.ClientTimeout(total=6) if self.method == "GET": if (self.url.find("?") >= 0): sep = '&' else: sep = '?' url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": msg})) async with aiohttp.ClientSession(timeout=timeout) as session: async with session.get(self.url) as resp: print(await resp.text()) else: headers = { "Content-type": "application/x-www-form-urlencoded", "Content-length": str(len(msg)) } async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session: async with session.post(self.url, data={'log': msg}) as resp: print(await resp.text())
这时代码执行崩溃了:
C:\Python37\lib\logging\__init__.py:894: RuntimeWarning: coroutine 'CustomHandler.emit' was never awaited self.emit(record) RuntimeWarning: Enable tracemalloc to get the object allocation traceback
服务端也没有收到发送日志的请求。
究其原因是由于emit方法中使用 async with session.post 函数,它需要在一个使用async 修饰的函数 里执行,所以修改emit函数,使用async来修饰,这里emit函数变成了异步的函数, 返回的是一个 coroutine 对象,要想执行coroutine对象,需要使用await, 但是脚本里却没有在哪里调用 await emit() ,所以崩溃信息 中显示 coroutine 'CustomHandler.emit' was never awaited。
既然emit方法返回的是一个coroutine对象,那么我们将它放一个loop中执行
async def main(): await logger.debug("今天天气不错") await logger.debug("是风和日丽的") loop = asyncio.get_event_loop() loop.run_until_complete(main())
执行依然报错:
raise TypeError('An asyncio.Future, a coroutine or an awaitable is '
意思是需要的是一个coroutine,但是传进来的对象不是。
这似乎就没有办法了,想要使用异步库来发送,但是却没有可以调用await的地方。
解决办法是有的,我们使用 asyncio.get_event_loop() 获取一个事件循环对象, 我们可以在这个对象上注册很多协程对象,这样当执行事件循环的时候,就是去执行注册在该事件循环上的协程,
我们通过一个小例子来看一下:
import asyncio async def test(n): while n > 0: await asyncio.sleep(1) print("test {}".format(n)) n -= 1 return n async def test2(n): while n >0: await asyncio.sleep(1) print("test2 {}".format(n)) n -= 1 def stoploop(task): print("执行结束, task n is {}".format(task.result())) loop.stop() loop = asyncio.get_event_loop() task = loop.create_task(test(5)) task2 = loop.create_task(test2(3)) task.add_done_callback(stoploop) task2 = loop.create_task(test2(3)) loop.run_forever()
我们使用 loop = asyncio.get_event_loop() 创建了一个事件循环对象loop, 并且在loop上创建了两个task, 并且给task1添加了一个回调函数,在task1它执行结束以后,将loop停掉。
注意看上面的代码,我们并没有在某处使用await来执行协程,而是通过将协程注册到某个事件循环对象上, 然后调用该循环的 run_forever() 函数,从而使该循环上的协程对象得以正常的执行。
上面得到的输出为:
test 5
test2 3
test 4
test2 2
test 3
test2 1
test 2
test 1
执行结束, task n is 0
可以看到,使用事件循环对象创建的task,在该循环执行run_forever() 以后就可以执行了如果不执行 loop.run_forever() 函数,则注册在它上面的协程也不会执行
loop = asyncio.get_event_loop() task = loop.create_task(test(5)) task.add_done_callback(stoploop) task2 = loop.create_task(test2(3)) time.sleep(5) # loop.run_forever()
上面的代码将loop.run_forever() 注释掉,换成time.sleep(5) 停5秒, 这时脚本不会有任何输出,在停了5秒 以后就中止了,
回到之前的日志发送远程服务器的代码,我们可以使用aiohttp封装一个发送数据的函数, 然后在emit中将 这个函数注册到全局的事件循环对象loop中,最后再执行loop.run_forever()
loop = asyncio.get_event_loop() class CustomHandler(logging.Handler): def __init__(self, host, uri, method="POST"): logging.Handler.__init__(self) self.url = "%s/%s" % (host, uri) method = method.upper() if method not in ["GET", "POST"]: raise ValueError("method must be GET or POST") self.method = method # 使用aiohttp封装发送数据函数 async def submit(self, data): timeout = aiohttp.ClientTimeout(total=6) if self.method == "GET": if self.url.find("?") >= 0: sep = '&' else: sep = '?' url = self.url + "%c%s" % (sep, urllib.parse.urlencode({"log": data})) async with aiohttp.ClientSession(timeout=timeout) as session: async with session.get(url) as resp: print(await resp.text()) else: headers = { "Content-type": "application/x-www-form-urlencoded", } async with aiohttp.ClientSession(timeout=timeout, headers=headers) as session: async with session.post(self.url, data={'log': data}) as resp: print(await resp.text()) return True def emit(self, record): msg = self.format(record) loop.create_task(self.submit(msg)) # 添加一个httphandler http_handler = CustomHandler(r"http://127.0.0.1:1987", 'api/log/get') http_handler.setLevel(logging.DEBUG) http_handler.setFormatter(fmt) logger.addHandler(http_handler) logger.debug("今天天气不错") logger.debug("是风和日丽的") loop.run_forever()
这时脚本就可以正常的异步执行了:
loop.create_task(self.submit(msg)) 也可以使用
asyncio.ensure_future(self.submit(msg), loop=loop) 来代替,目的都是将协程对象注册到事件循环中。
但这种方式有一点要注意,loop.run_forever() 将会一直阻塞,所以需要有个地方调用 loop.stop() 方法. 可以注册到某个task的回调中。
以上是Python怎么异步发送日志到远程服务器的详细内容。更多信息请关注PHP中文网其他相关文章!

Python在自动化、脚本编写和任务管理中表现出色。1)自动化:通过标准库如os、shutil实现文件备份。2)脚本编写:使用psutil库监控系统资源。3)任务管理:利用schedule库调度任务。Python的易用性和丰富库支持使其在这些领域中成为首选工具。

要在有限的时间内最大化学习Python的效率,可以使用Python的datetime、time和schedule模块。1.datetime模块用于记录和规划学习时间。2.time模块帮助设置学习和休息时间。3.schedule模块自动化安排每周学习任务。

Python在游戏和GUI开发中表现出色。1)游戏开发使用Pygame,提供绘图、音频等功能,适合创建2D游戏。2)GUI开发可选择Tkinter或PyQt,Tkinter简单易用,PyQt功能丰富,适合专业开发。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。 Python以简洁和强大的生态系统着称,C 则以高性能和底层控制能力闻名。

2小时内可以学会Python的基本编程概念和技能。1.学习变量和数据类型,2.掌握控制流(条件语句和循环),3.理解函数的定义和使用,4.通过简单示例和代码片段快速上手Python编程。

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

DVWA
Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器

SublimeText3 Linux新版
SublimeText3 Linux最新版

Atom编辑器mac版下载
最流行的的开源编辑器

SublimeText3汉化版
中文版,非常好用