搜索
首页后端开发Python教程Python Numpy中ndarray的常见操作实例分析

Python Numpy中ndarray的常见操作实例分析

May 10, 2023 pm 04:25 PM
pythonnumpyndarray

前言

NumPy(Numerical Python)是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)),支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
Numpy中主要使用ndarray来处理N维数组,Numpy中的大部分属性和方法都是为ndarray服务的,所以掌握Numpy中ndarray的常见操作非常有必要!

0 Numpy基础知识

NumPy的主要对象是同构多维数组。它是一个元素表(通常是数字),所有类型都相同,由非负整数元组索引。在NumPy维度中称为轴 。
下面所示的例子中,数组有2个轴。第一轴的长度为2,第二轴的长度为3。

[[ 1., 0., 0.],
 [ 0., 1., 2.]]

1 ndarray的属性

1.1 输出ndarray的常见属性

  • ndarray.ndim : 数组的轴(维度)的个数。在Python世界中,维度的数量被称为rank。

  • ndarray.shape :数组的维度。这是一个整数的元组,表示每个维度中数组的大小。对于有 n 行和 m 列的矩阵,shape 将是 (n,m)。因此,shape 元组的长度就是rank或维度的个数 ndim。

  • ndarray.size :数组元素的总数。这等于 shape 的元素的乘积。

  • ndarray.dtype :一个描述数组中元素类型的对象。可以使用标准的Python类型创建或指定dtype。另外NumPy提供它自己的类型。例如numpy.int32、numpy.int16和numpy.float64。

  • ndarray.itemsize :数组中每个元素的字节大小。例如,元素为 float64 类型的数组的 itemsize 为8(=64/8),而 complex32 类型的数组的 itemsize 为4(=32/8)。它等于 ndarray.dtype.itemsize 。

>>> import numpy as np
>>> a = np.arange(15).reshape(3, 5)
>>> a
array([[ 0,  1,  2,  3,  4],
       [ 5,  6,  7,  8,  9],
       [10, 11, 12, 13, 14]])
>>> a.shape
(3, 5)
>>> a.ndim
2
>>> a.dtype.name
'int64'
>>> a.itemsize
8
>>> a.size
15
>>> type(a)
<type &#39;numpy.ndarray&#39;>
>>> b = np.array([6, 7, 8])
>>> b
array([6, 7, 8])
>>> type(b)
<type &#39;numpy.ndarray&#39;>

2 ndarray的数据类型

在同一个ndarray中,存储的是同一类型的数据,ndarray常见的数据类型包括:

Python Numpy中ndarray的常见操作实例分析

3 修改ndarray的形状和数据类型

3.1 查看和修改ndarray的形状

## ndarray reshape操作
array_a = np.array([[1, 2, 3], [4, 5, 6]])
print(array_a, array_a.shape)
array_a_1 = array_a.reshape((3, 2))
print(array_a_1, array_a_1.shape)
# note: reshape不能改变ndarray中元素的个数,例如reshape之前为(2,3),reshape之后为(3,2)/(1,6)...
## ndarray转置
array_a_2 = array_a.T
print(array_a_2, array_a_2.shape)
## ndarray ravel操作:将ndarray展平
a.ravel()  # returns the array, flattened
array([ 1,  2,  3,  4,  5,  6 ])

输出:
[[1 2 3]
 [4 5 6]] (2, 3)
[[1 2]
 [3 4]
 [5 6]] (3, 2)
[[1 4]
 [2 5]
 [3 6]] (3, 2)

3.2 查看和修改ndarray的数据类型

astype(dtype[, order, casting, subok, copy]):修改ndarray中的数据类型。传入需要修改的数据类型,其他关键字参数可以不关注。

array_a = np.array([[1, 2, 3], [4, 5, 6]])
print(array_a, array_a.dtype)
array_a_1 = array_a.astype(np.int64)
print(array_a_1, array_a_1.dtype)
输出:
[[1 2 3]
 [4 5 6]] int32
[[1 2 3]
 [4 5 6]] int64

4 ndarray数组创建

NumPy主要通过np.array()函数来创建ndarray数组。

>>> import numpy as np
>>> a = np.array([2,3,4])
>>> a
array([2, 3, 4])
>>> a.dtype
dtype(&#39;int64&#39;)
>>> b = np.array([1.2, 3.5, 5.1])
>>> b.dtype
dtype(&#39;float64&#39;)

也可以在创建时显式指定数组的类型:

>>> c = np.array( [ [1,2], [3,4] ], dtype=complex )
>>> c
array([[ 1.+0.j,  2.+0.j],
       [ 3.+0.j,  4.+0.j]])

也可以通过使用np.random.random函数来创建随机的ndarray数组。

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])

通常,数组的元素最初是未知的,但它的大小是已知的。因此,NumPy提供了几个函数来创建具有初始占位符内容的数组。这就减少了数组增长的必要,因为数组增长的操作花费很大。
函数zeros创建一个由0组成的数组,函数 ones创建一个完整的数组,函数empty 创建一个数组,其初始内容是随机的,取决于内存的状态。默认情况下,创建的数组的dtype是 float64 类型的。

>>> np.zeros( (3,4) )
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
>>> np.ones( (2,3,4), dtype=np.int16 )                # dtype can also be specified
array([[[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]],
       [[ 1, 1, 1, 1],
        [ 1, 1, 1, 1],
        [ 1, 1, 1, 1]]], dtype=int16)
>>> np.empty( (2,3) )                                 # uninitialized, output may vary
array([[  3.73603959e-262,   6.02658058e-154,   6.55490914e-260],
       [  5.30498948e-313,   3.14673309e-307,   1.00000000e+000]])

为了创建数字组成的数组,NumPy提供了一个类似于range的函数,该函数返回数组而不是列表。

>>> np.arange( 10, 30, 5 )
array([10, 15, 20, 25])
>>> np.arange( 0, 2, 0.3 )                 # it accepts float arguments
array([ 0. ,  0.3,  0.6,  0.9,  1.2,  1.5,  1.8])

5 ndarray数组的常见运算

与许多矩阵语言不同,乘积运算符*在NumPy数组中按元素进行运算。矩阵乘积可以使用@运算符(在python> = 3.5中)或dot函数或方法执行:

>>> A = np.array( [[1,1],
...             [0,1]] )
>>> B = np.array( [[2,0],
...             [3,4]] )
>>> A * B                       # elementwise product
array([[2, 0],
       [0, 4]])
>>> A @ B                       # matrix product
array([[5, 4],
       [3, 4]])
>>> A.dot(B)                    # another matrix product
array([[5, 4],
       [3, 4]])

某些操作(例如+=*=)会更直接更改被操作的矩阵数组而不会创建新矩阵数组。

>>> a = np.ones((2,3), dtype=int)
>>> b = np.random.random((2,3))
>>> a *= 3
>>> a
array([[3, 3, 3],
       [3, 3, 3]])
>>> b += a
>>> b
array([[ 3.417022  ,  3.72032449,  3.00011437],
       [ 3.30233257,  3.14675589,  3.09233859]])
>>> a += b                  # b is not automatically converted to integer type
Traceback (most recent call last):
  ...
TypeError: Cannot cast ufunc add output from dtype(&#39;float64&#39;) to dtype(&#39;int64&#39;) with casting rule &#39;same_kind&#39;

当使用不同类型的数组进行操作时,结果数组的类型对应于更一般或更精确的数组(称为向上转换的行为)。

>>> a = np.ones(3, dtype=np.int32)
>>> b = np.linspace(0,pi,3)
>>> b.dtype.name
&#39;float64&#39;
>>> c = a+b
>>> c
array([ 1.        ,  2.57079633,  4.14159265])
>>> c.dtype.name
&#39;float64&#39;
>>> d = np.exp(c*1j)
>>> d
array([ 0.54030231+0.84147098j, -0.84147098+0.54030231j,
       -0.54030231-0.84147098j])
>>> d.dtype.name
&#39;complex128&#39;

许多一元操作,例如计算数组中所有元素的总和,都是作为ndarray类的方法实现的。

>>> a = np.random.random((2,3))
>>> a
array([[ 0.18626021,  0.34556073,  0.39676747],
       [ 0.53881673,  0.41919451,  0.6852195 ]])
>>> a.sum()
2.5718191614547998
>>> a.min()
0.1862602113776709
>>> a.max()
0.6852195003967595

默认情况下,这些操作适用于数组,就像它是一个数字列表一样,无论其形状如何。但是,通过指定axis 参数,您可以沿数组的指定轴应用操作:

>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # 计算每一列的和
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # 计算每一行的和
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
解释:以第一行为例,0=0,1=1+0,3=2+1+0,6=3+2+1+0

6 ndarray数组的索引、切片和迭代

一维的数组可以进行索引、切片和迭代操作的,就像列表和其他Python序列类型一样。

>>> a = np.arange(10)**3
>>> a
array([  0,   1,   8,  27,  64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> a[:6:2] = -1000    # 等价于 a[0:6:2] = -1000; 从0到6的位置, 每隔一个设置为-1000
>>> a
array([-1000,     1, -1000,    27, -1000,   125,  fan 216,   343,   512,   729])
>>> a[ : :-1]                                 # 将a反转
array([  729,   512,   343,   216,   125, -1000,    27, -1000,     1, -1000])

多维的数组每个轴可以有一个索引。这些索引以逗号分隔的元组给出:

>>> b
array([[ 0,  1,  2,  3],
       [10, 11, 12, 13],
       [20, 21, 22, 23],
       [30, 31, 32, 33],
       [40, 41, 42, 43]])
>>> b[2,3]
23
>>> b[0:5, 1]                       # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[ : ,1]                        # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, : ]                      # each column in the second and third row of b
array([[10, 11, 12, 13],
       [20, 21, 22, 23]])
>>> b[-1]                                  # the last row. Equivalent to b[-1,:]
array([40, 41, 42, 43])

7 ndarray数组的堆叠、拆分

几个数组可以沿不同的轴堆叠在一起,例如:np.vstack()函数和np.hstack()函数

>>> a = np.floor(10*np.random.random((2,2)))
>>> a
array([[ 8.,  8.],
       [ 0.,  0.]])
>>> b = np.floor(10*np.random.random((2,2)))
>>> b
array([[ 1.,  8.],
       [ 0.,  4.]])
>>> np.vstack((a,b))
array([[ 8.,  8.],
       [ 0.,  0.],
       [ 1.,  8.],
       [ 0.,  4.]])
>>> np.hstack((a,b))
array([[ 8.,  8.,  1.,  8.],
       [ 0.,  0.,  0.,  4.]])

column_stack()函数将1D数组作为列堆叠到2D数组中。

>>> from numpy import newaxis
>>> a = np.array([4.,2.])
>>> b = np.array([3.,8.])
>>> np.column_stack((a,b))     # returns a 2D array
array([[ 4., 3.],
       [ 2., 8.]])
>>> np.hstack((a,b))           # the result is different
array([ 4., 2., 3., 8.])
>>> a[:,newaxis]               # this allows to have a 2D columns vector
array([[ 4.],
       [ 2.]])
>>> np.column_stack((a[:,newaxis],b[:,newaxis]))
array([[ 4.,  3.],
       [ 2.,  8.]])
>>> np.hstack((a[:,newaxis],b[:,newaxis]))   # the result is the same
array([[ 4.,  3.],
       [ 2.,  8.]])

使用hsplit(),可以沿数组的水平轴拆分数组,方法是指定要返回的形状相等的数组的数量,或者指定应该在其之后进行分割的列:
同理,使用vsplit(),可以沿数组的垂直轴拆分数组,方法同上。

################### np.hsplit ###################
>>> a = np.floor(10*np.random.random((2,12)))
>>> a
array([[ 9.,  5.,  6.,  3.,  6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 1.,  4.,  9.,  2.,  2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])
>>> np.hsplit(a,3)   # Split a into 3
[array([[ 9.,  5.,  6.,  3.],
       [ 1.,  4.,  9.,  2.]]), array([[ 6.,  8.,  0.,  7.],
       [ 2.,  1.,  0.,  6.]]), array([[ 9.,  7.,  2.,  7.],
       [ 2.,  2.,  4.,  0.]])]
>>> np.hsplit(a,(3,4))   # Split a after the third and the fourth column
[array([[ 9.,  5.,  6.],
       [ 1.,  4.,  9.]]), array([[ 3.],
       [ 2.]]), array([[ 6.,  8.,  0.,  7.,  9.,  7.,  2.,  7.],
       [ 2.,  1.,  0.,  6.,  2.,  2.,  4.,  0.]])]
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0.,  1.],
        [2.,  3.]],
       [[4.,  5.],
        [6.,  7.]]])
################### np.vsplit ###################
>>> np.vsplit(x, 2)
[array([[[0., 1.],
        [2., 3.]]]), array([[[4., 5.],
        [6., 7.]]])]

以上是Python Numpy中ndarray的常见操作实例分析的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
学习Python:2小时的每日学习是否足够?学习Python:2小时的每日学习是否足够?Apr 18, 2025 am 12:22 AM

每天学习Python两个小时是否足够?这取决于你的目标和学习方法。1)制定清晰的学习计划,2)选择合适的学习资源和方法,3)动手实践和复习巩固,可以在这段时间内逐步掌握Python的基本知识和高级功能。

Web开发的Python:关键应用程序Web开发的Python:关键应用程序Apr 18, 2025 am 12:20 AM

Python在Web开发中的关键应用包括使用Django和Flask框架、API开发、数据分析与可视化、机器学习与AI、以及性能优化。1.Django和Flask框架:Django适合快速开发复杂应用,Flask适用于小型或高度自定义项目。2.API开发:使用Flask或DjangoRESTFramework构建RESTfulAPI。3.数据分析与可视化:利用Python处理数据并通过Web界面展示。4.机器学习与AI:Python用于构建智能Web应用。5.性能优化:通过异步编程、缓存和代码优

Python vs.C:探索性能和效率Python vs.C:探索性能和效率Apr 18, 2025 am 12:20 AM

Python在开发效率上优于C ,但C 在执行性能上更高。1.Python的简洁语法和丰富库提高开发效率。2.C 的编译型特性和硬件控制提升执行性能。选择时需根据项目需求权衡开发速度与执行效率。

python在行动中:现实世界中的例子python在行动中:现实世界中的例子Apr 18, 2025 am 12:18 AM

Python在现实世界中的应用包括数据分析、Web开发、人工智能和自动化。1)在数据分析中,Python使用Pandas和Matplotlib处理和可视化数据。2)Web开发中,Django和Flask框架简化了Web应用的创建。3)人工智能领域,TensorFlow和PyTorch用于构建和训练模型。4)自动化方面,Python脚本可用于复制文件等任务。

Python的主要用途:综合概述Python的主要用途:综合概述Apr 18, 2025 am 12:18 AM

Python在数据科学、Web开发和自动化脚本领域广泛应用。1)在数据科学中,Python通过NumPy、Pandas等库简化数据处理和分析。2)在Web开发中,Django和Flask框架使开发者能快速构建应用。3)在自动化脚本中,Python的简洁性和标准库使其成为理想选择。

Python的主要目的:灵活性和易用性Python的主要目的:灵活性和易用性Apr 17, 2025 am 12:14 AM

Python的灵活性体现在多范式支持和动态类型系统,易用性则源于语法简洁和丰富的标准库。1.灵活性:支持面向对象、函数式和过程式编程,动态类型系统提高开发效率。2.易用性:语法接近自然语言,标准库涵盖广泛功能,简化开发过程。

Python:多功能编程的力量Python:多功能编程的力量Apr 17, 2025 am 12:09 AM

Python因其简洁与强大而备受青睐,适用于从初学者到高级开发者的各种需求。其多功能性体现在:1)易学易用,语法简单;2)丰富的库和框架,如NumPy、Pandas等;3)跨平台支持,可在多种操作系统上运行;4)适合脚本和自动化任务,提升工作效率。

每天2小时学习Python:实用指南每天2小时学习Python:实用指南Apr 17, 2025 am 12:05 AM

可以,在每天花费两个小时的时间内学会Python。1.制定合理的学习计划,2.选择合适的学习资源,3.通过实践巩固所学知识,这些步骤能帮助你在短时间内掌握Python。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具