搜索
首页后端开发Python教程如何使用Python读取Hive数据库?

如何使用Python读取Hive数据库?

May 09, 2023 pm 04:28 PM
pythonhive

实际业务读取hive数据库的代码

import logging
import pandas as pd
from impala.dbapi import connect
import sqlalchemy
from sqlalchemy.orm import sessionmaker
import os
import time
import os
import datetime
from dateutil.relativedelta import relativedelta
from typing import Dict, List
import logging
import threading
import pandas as pd
import pickle
class HiveHelper(object):
    def __init__(
        self,
        host='10.2.32.22',
        port=21051,
        database='ur_ai_dw',
        auth_mechanism='LDAP',
        user='urbi',
        password='Ur#730xd',
        logger:logging.Logger=None
        ):
        self.host = host
        self.port = port
        self.database = database
        self.auth_mechanism = auth_mechanism
        self.user = user
        self.password = password
        self.logger = logger
        self.impala_conn = None
        self.conn = None
        self.cursor = None
        self.engine = None
        self.session = None
    def create_table_code(self, file_name):
        '''创建表类代码'''
        os.system(f'sqlacodegen {self.connection_str} > {file_name}')
        return self.conn
    def get_conn(self):
        '''创建连接或获取连接'''
        if self.conn is None:
            engine = self.get_engine()
            self.conn = engine.connect()
        return self.conn
    def get_impala_conn(self):
        '''创建连接或获取连接'''
        if self.impala_conn is None:
            self.impala_conn = connect(
                host=self.host,
                port=self.port,
                database=self.database,
                auth_mechanism=self.auth_mechanism,
                user=self.user,
                password=self.password
                )
        return self.impala_conn
    def get_engine(self):
        '''创建连接或获取连接'''
        if self.engine is None:
            self.engine = sqlalchemy.create_engine('impala://', creator=self.get_impala_conn)
        return self.engine
    def get_cursor(self):
        '''创建连接或获取连接'''
        if self.cursor is None:
            self.cursor = self.conn.cursor()
        return self.cursor
    def get_session(self) -> sessionmaker:
        '''创建连接或获取连接'''
        if self.session is None:
            engine = self.get_engine()
            Session = sessionmaker(bind=engine)
            self.session = Session()
        return self.session
    def close_conn(self):
        '''关闭连接'''
        if self.conn is not None:
            self.conn.close()
            self.conn = None
        self.dispose_engine()
        self.close_impala_conn()
    def close_impala_conn(self):
        '''关闭impala连接'''
        if self.impala_conn is not None:
            self.impala_conn.close()
            self.impala_conn = None
    def close_session(self):
        '''关闭连接'''
        if self.session is not None:
            self.session.close()
            self.session = None
        self.dispose_engine()
    def dispose_engine(self):
        '''释放engine'''
        if self.engine is not None:
            # self.engine.dispose(close=False)
            self.engine.dispose()
            self.engine = None
    def close_cursor(self):
        '''关闭cursor'''
        if self.cursor is not None:
            self.cursor.close()
            self.cursor = None
    def get_data(self, sql, auto_close=True) -> pd.DataFrame:
        '''查询数据'''
        conn = self.get_conn()
        data = None
        try:
            # 异常重试3次
            for i in range(3):
                try:
                    data = pd.read_sql(sql, conn)
                    break
                except Exception as ex:
                    if i == 2:
                        raise ex # 往外抛出异常
                    time.sleep(60) # 一分钟后重试
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            if auto_close:
                self.close_conn()
        return data
pass
class VarsHelper():
    def __init__(self, save_dir, auto_save=True):
        self.save_dir = save_dir
        self.auto_save = auto_save
        self.values = {}
        if not os.path.exists(os.path.dirname(self.save_dir)):
            os.makedirs(os.path.dirname(self.save_dir))
        if os.path.exists(self.save_dir):
            with open(self.save_dir, 'rb') as f:
                self.values = pickle.load(f)
                f.close()
    def set_value(self, key, value):
        self.values[key] = value
        if self.auto_save:
            self.save_file()
    def get_value(self, key):
        return self.values[key]
    def has_key(self, key):
        return key in self.values.keys()
    def save_file(self):
        with open(self.save_dir, 'wb') as f:
            pickle.dump(self.values, f)
            f.close()
pass
class GlobalShareArgs():
    args = {
        "debug": False
    }
    def get_args():
        return GlobalShareArgs.args
    def set_args(args):
        GlobalShareArgs.args = args
    def set_args_value(key, value):
        GlobalShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return GlobalShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in GlobalShareArgs.args.keys()
    def update(args):
        GlobalShareArgs.args.update(args)
pass
class ShareArgs():
    args = {
        "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 标签目录
        "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚类导出标签目录
        "common_datas_dir":"./hjx/data", # 共用数据目录。ur_bi_dw的公共
        "only_predict": False, # 只识别,不训练
        "delete_model": True, # 先删除模型,仅在训练时使用
        "export_excel": False, # 导出excel
        "classes": 12, # 聚类数
        "batch_size": 16,
        "hidden_size": 32,
        "max_nrof_epochs": 100,
        "learning_rate": 0.0005,
        "loss_type": "categorical_crossentropy",
        "avg_model_num": 10,
        "steps_per_epoch": 4.0, # 4.0
        "lr_callback_patience": 4, 
        "lr_callback_cooldown": 1,
        "early_stopping_callback_patience": 6,
        "get_data": True,
    }
    def get_args():
        return ShareArgs.args
    def set_args(args):
        ShareArgs.args = args
    def set_args_value(key, value):
        ShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return ShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in ShareArgs.args.keys()
    def update(args):
        ShareArgs.args.update(args)
pass
class UrBiGetDatasBase():
    # 线程锁列表,同保存路径共用锁
    lock_dict:Dict[str, threading.Lock] = {}
    # 时间列表,用于判断是否超时
    time_dict:Dict[str, datetime.datetime] = {}
    # 用于记录是否需要更新超时时间
    get_data_timeout_dict:Dict[str, bool] = {}
    def __init__(
        self,
        host='10.2.32.22',
        port=21051,
        database='ur_ai_dw',
        auth_mechanism='LDAP',
        user='urbi',
        password='Ur#730xd',
        save_dir=None,
        logger:logging.Logger=None,
        ):
        self.save_dir = save_dir
        self.logger = logger
        self.db_helper = HiveHelper(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            logger=logger
            )
        # 创建子目录
        if self.save_dir is not None and not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.vars_helper = None
        if GlobalShareArgs.get_args_value('debug'):
            self.vars_helper = VarsHelper('./hjx/data/vars/UrBiGetDatas') 
    def close(self):
        '''关闭连接'''
        self.db_helper.close_conn()
    def get_last_time(self, key_name) -> bool:
        '''获取是否超时'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if self.vars_helper is not None and self.vars_helper.has_key('UrBiGetDatasBase.time_list'):
            UrBiGetDatasBase.time_dict = self.vars_helper.get_value('UrBiGetDatasBase.time_list')
        timeout = 12 # 12小时
        if GlobalShareArgs.get_args_value('debug'):
            timeout = 24 # 24小时
        get_data_timeout = False
        if key_name not in UrBiGetDatasBase.time_dict.keys() or (datetime.datetime.today() - UrBiGetDatasBase.time_dict[key_name]).total_seconds()>(timeout*60*60):
            self.logger.info('超时%d小时,重新查数据:%s', timeout, key_name)
            # UrBiGetDatasBase.time_list[key_name] = datetime.datetime.today()
            get_data_timeout = True
        else:
            self.logger.info('未超时%d小时,跳过查数据:%s', timeout, key_name)
        # if self.vars_helper is not None :
        #     self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_list)
        UrBiGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout
        return get_data_timeout
    def save_last_time(self, key_name):
        '''更新状态超时'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if UrBiGetDatasBase.get_data_timeout_dict[key_name]:
            UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today()
        if self.vars_helper is not None :
            UrBiGetDatasBase.time_dict[key_name] = datetime.datetime.today()
            self.vars_helper.set_value('UrBiGetDatasBase.time_list', UrBiGetDatasBase.time_dict)
    def get_lock(self, key_name) -> threading.Lock:
        '''获取锁'''
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if key_name not in UrBiGetDatasBase.lock_dict.keys():
            UrBiGetDatasBase.lock_dict[key_name] = threading.Lock()
        return UrBiGetDatasBase.lock_dict[key_name]
    def get_data_of_date(
        self,
        save_dir,
        sql,
        sort_columns:List[str],
        del_index_list=[-1], # 删除最后下标
        start_date = datetime.datetime(2017, 1, 1), # 开始时间
        offset = relativedelta(months=3), # 时间间隔
        date_format_fun = lambda d: '%04d%02d01' % (d.year, d.month), # 查询语句中替代时间参数的格式化
        filename_format_fun = lambda d: '%04d%02d.csv' % (d.year, d.month), # 查询语句中替代时间参数的格式化
        stop_date = '20700101', # 超过时间则停止
        data_format_fun = None, # 格式化数据
        ):
        '''分时间增量读取数据'''
        # 创建文件夹
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        else:
            #删除最后一个文件
            file_list = os.listdir(save_dir)
            if len(file_list)>0:
                file_list.sort()
                for del_index in del_index_list:
                    os.remove(os.path.join(save_dir,file_list[del_index]))
                    print('删除最后一个文件:', file_list[del_index])
        select_index = -1
        # start_date = datetime.datetime(2017, 1, 1)
        while True:
            end_date = start_date + offset
            start_date_str = date_format_fun(start_date)
            end_date_str = date_format_fun(end_date)
            self.logger.info('date: %s-%s', start_date_str, end_date_str)
            file_path = os.path.join(save_dir, filename_format_fun(start_date))
            # self.logger.info('file_path: %s', file_path)
            if not os.path.exists(file_path):
                data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str))
                if data is None:
                    break
                self.logger.info('data: %d', len(data))
                # self.logger.info('data: %d', data.columns)
                if len(data)>0:
                    select_index+=1
                    if data_format_fun is not None:
                        data = data_format_fun(data)
                    # 排序
                    data = data.sort_values(sort_columns)
                    data.to_csv(file_path)
                elif select_index!=-1:
                    break
                elif stop_date < start_date_str:
                    raise Exception("读取数据异常,时间超出最大值!")
            start_date = end_date
pass
class UrBiGetDatas(UrBiGetDatasBase):
    def __init__(
        self,
        host=&#39;10.2.32.22&#39;,
        port=21051,
        database=&#39;ur_ai_dw&#39;,
        auth_mechanism=&#39;LDAP&#39;,
        user=&#39;urbi&#39;,
        password=&#39;Ur#730xd&#39;,
        save_dir=&#39;./hjx/data/ur_bi_dw_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_dim_date(self):
        &#39;&#39;&#39;日期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_date&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_date.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_date.date_key&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_shop(self):
        &#39;&#39;&#39;店铺数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_shop.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_shop&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_shop.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_shop.shop_no&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_vip(self):
        &#39;&#39;&#39;会员数据&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;vip_no&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = &#39;&#39;&#39;SELECT dv.*, dd.date_key, dd.date_name2 
            FROM ur_bi_dw.dim_vip as dv
            INNER JOIN ur_bi_dw.dim_date as dd
            ON dv.card_create_date=dd.date_name2 
            where dd.date_key >= %s
            and dd.date_key < %s&#39;&#39;&#39;
            # data:pd.DataFrame = self.db_helper.get_data(sql)
            sort_columns = [&#39;dv.vip_no&#39;]
            # TODO:
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
                offset=relativedelta(years=1)
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_weather(self):
        &#39;&#39;&#39;天气数据&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;weather&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select weather.* from ur_bi_ods.ods_base_weather_data_1200 as weather
            where weather.date_key>=%s and weather.date_key<%s
            """
            sort_columns = [&#39;weather.date_key&#39;,&#39;weather.areaid&#39;]
            def data_format_fun(data):
                columns = list(data.columns)
                columns = {c:&#39;weather.&#39;+c for c in columns}
                data = data.rename(columns=columns)
                return data
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                del_index_list=[-2, -1], # 删除最后下标
                data_format_fun=data_format_fun,
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_weather_city(self):
        &#39;&#39;&#39;天气城市数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.weather_city.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_weather_city as weather_city&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;weather_city.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods(self):
        &#39;&#39;&#39;货品数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.dim_goods&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_goods.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_market_shop_date(self):
        &#39;&#39;&#39;店铺商品生命周期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods_market_shop_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            # sql = &#39;SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date&#39;
            sql = &#39;&#39;&#39;
            select shop_no, sku_no, shop_market_date, lifecycle_end_date, lifecycle_days
            FROM ur_bi_dw.dim_goods_market_shop_date
            where lifecycle_end_date is not null
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;lifecycle_end_date.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;shop_market_date&#39;])
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_market_date(self):
        &#39;&#39;&#39;全国商品生命周期数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ur_bi_dw.dim_goods_market_date.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select * FROM ur_bi_dw.dim_goods_market_date
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:&#39;dim_goods_market_date.&#39;+c for c in columns}
            data = data.rename(columns=columns)
            data = data.sort_values([&#39;dim_goods_market_date.sku_no&#39;])
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_goods_color_dev_sizes(self):
        &#39;&#39;&#39;商品开发码数数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dim_goods_color_dev_sizes.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            # sql = &#39;SELECT * FROM ur_bi_dw.dim_goods_market_shop_date as goods_shop_date&#39;
            sql = &#39;SELECT * FROM ur_bi_dm.dim_goods_color_dev_sizes&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;dim_goods_color_dev_sizes.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_sales_size(self):
        &#39;&#39;&#39;实际销售金额&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;dwd_daily_sales_size_all&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select shop_no,sku_no,date_key,`size`,
                sum(tag_price) as `tag_price`,
                sum(sales_qty) as `sales_qty`,
                sum(sales_tag_amt) as `sales_tag_amt`,
                sum(sales_amt) as `sales_amt`,
                count(0) as `sales_count`
            from ur_bi_dw.dwd_daily_sales_size as sales
            where sales.date_key>=%s and sales.date_key<%s
                and sales.currency_code=&#39;CNY&#39;
            group by shop_no,sku_no,date_key,`size`
            """
            sort_columns = [&#39;date_key&#39;,&#39;shop_no&#39;,&#39;sku_no&#39;]
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_delivery_size(self):
        &#39;&#39;&#39;实际配货金额&#39;&#39;&#39;
        sub_dir = os.path.join(self.save_dir,&#39;dwd_daily_delivery_size_all&#39;)
        now_lock = self.get_lock(sub_dir)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(sub_dir):
                return
            sql = """
            select shop_no,sku_no,date_key,`size`,
                sum(delivery.shop_distr_received_qty) as `shop_distr_received_qty`,
                sum(delivery.shop_distr_received_amt) as `shop_distr_received_amt`,
                sum(delivery.online_distr_received_qty) as `online_distr_received_qty`,
                sum(delivery.online_distr_received_amt) as `online_distr_received_amt`,
                sum(delivery.pr_received_qty) as `pr_received_qty`,
                count(0) as `delivery_count`
            from ur_bi_dw.dwd_daily_delivery_size as delivery
            where delivery.date_key>=%s and delivery.date_key<%s
                and delivery.currency_code=&#39;CNY&#39;
            group by shop_no,sku_no,date_key,`size`
            """
            sort_columns = [&#39;date_key&#39;,&#39;shop_no&#39;,&#39;sku_no&#39;]
            self.get_data_of_date(
                save_dir=sub_dir,
                sql=sql,
                sort_columns=sort_columns,
                start_date=datetime.datetime(2017, 1, 1), # 开始时间
            )
            # 更新超时时间
            self.save_last_time(sub_dir)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_v_last_nation_sales_status(self):
        &#39;&#39;&#39;商品畅滞销数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;v_last_nation_sales_status.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;SELECT * FROM ur_bi_dw.v_last_nation_sales_status&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;v_last_nation_sales_status.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dwd_daily_finacial_goods(self):
        &#39;&#39;&#39;商品成本价数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dwd_daily_finacial_goods.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = """
            select t1.sku_no,t1.`size`,t1.cost_tax_incl from ur_bi_dw.dwd_daily_finacial_goods as t1
            inner join (
                select sku_no,`size`,max(date_key) as date_key
                from ur_bi_dw.dwd_daily_finacial_goods
                where currency_code=&#39;CNY&#39; and country_code=&#39;CN&#39;
                group by sku_no,`size`
            ) as t2
            on t2.sku_no=t1.sku_no
                and t2.`size`=t1.`size`
                and t2.date_key=t1.date_key
            where t1.currency_code=&#39;CNY&#39; and t1.country_code=&#39;CN&#39;
            """
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;t1.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_dim_size_group(self):
        &#39;&#39;&#39;尺码映射数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;dim_size_group.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = """select * from ur_bi_dw.dim_size_group"""
            data:pd.DataFrame = self.db_helper.get_data(sql)
            columns = list(data.columns)
            columns = {c:c.replace(&#39;dim_size_group.&#39;,&#39;&#39;) for c in columns}
            data = data.rename(columns=columns)
            data.to_csv(file_path, index=False)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_common_datas(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    logger:logging.Logger=None):
    # 共用文件
    common_datas_dir = ShareArgs.get_args_value(&#39;common_datas_dir&#39;)
    common_ur_bi_dir = os.path.join(common_datas_dir, &#39;ur_bi_data&#39;)
    ur_bi_get_datas = UrBiGetDatas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=common_ur_bi_dir,
        logger=logger
    )
    try:
        logger.info(&#39;正在查询日期数据...&#39;)
        ur_bi_get_datas.get_dim_date()
        logger.info(&#39;查询日期数据完成!&#39;)
        logger.info(&#39;正在查询店铺数据...&#39;)
        ur_bi_get_datas.get_dim_shop()
        logger.info(&#39;查询店铺数据完成!&#39;)
        logger.info(&#39;正在查询天气数据...&#39;)
        ur_bi_get_datas.get_weather()
        logger.info(&#39;查询天气数据完成!&#39;)
        logger.info(&#39;正在查询天气城市数据...&#39;)
        ur_bi_get_datas.get_weather_city()
        logger.info(&#39;查询天气城市数据完成!&#39;)
        logger.info(&#39;正在查询货品数据...&#39;)
        ur_bi_get_datas.get_dim_goods()
        logger.info(&#39;查询货品数据完成!&#39;)
        logger.info(&#39;正在查询实际销量数据...&#39;)
        ur_bi_get_datas.get_dwd_daily_sales_size()
        logger.info(&#39;查询实际销量数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
class CustomUrBiGetDatas(UrBiGetDatasBase):
    def __init__(
        self,
        host=&#39;10.2.32.22&#39;,
        port=21051,
        database=&#39;ur_ai_dw&#39;,
        auth_mechanism=&#39;LDAP&#39;,
        user=&#39;urbi&#39;,
        password=&#39;Ur#730xd&#39;,
        save_dir=&#39;./hjx/data/ur_bi_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            auth_mechanism=auth_mechanism,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_sales_goal_amt(self):
        &#39;&#39;&#39;销售目标金额&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;month_of_year_sales_goal_amt.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select sales_goal.shop_no,
                if(sales_goal.serial=&#39;Y&#39;,&#39;W&#39;,sales_goal.serial) as `sales_goal.serial`,
                dates.month_of_year,
                sum(sales_goal.sales_goal_amt) as sales_goal_amt
            from ur_bi_dw.dwd_sales_goal_west as sales_goal
            inner join ur_bi_dw.dim_date as dates
                on sales_goal.date_key = dates.date_key
            group by sales_goal.shop_no,
                if(sales_goal.serial=&#39;Y&#39;,&#39;W&#39;,sales_goal.serial),
                dates.month_of_year
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;shop_no&#39;:&#39;sales_goal.shop_no&#39;,
                &#39;serial&#39;:&#39;sales_goal.serial&#39;,
                &#39;month_of_year&#39;:&#39;dates.month_of_year&#39;,
            })
            # 排序
            data = data.sort_values([&#39;sales_goal.shop_no&#39;,&#39;sales_goal.serial&#39;,&#39;dates.month_of_year&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
    def get_shop_serial_area(self):
        &#39;&#39;&#39;店-系列面积&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;shop_serial_area.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            if not self.get_last_time(file_path):
                return
            sql = &#39;&#39;&#39;
            select shop_serial_area.shop_no,
                if(shop_serial_area.serial=&#39;Y&#39;,&#39;W&#39;,shop_serial_area.serial) as `shop_serial_area.serial`,
                shop_serial_area.month_of_year,
                sum(shop_serial_area.area) as `shop_serial_area.area`
            from ur_bi_dw.dwd_shop_serial_area as shop_serial_area
            where shop_serial_area.area is not null
            group by shop_serial_area.shop_no,if(shop_serial_area.serial=&#39;Y&#39;,&#39;W&#39;,shop_serial_area.serial),shop_serial_area.month_of_year
            &#39;&#39;&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;shop_no&#39;:&#39;shop_serial_area.shop_no&#39;,
                &#39;serial&#39;:&#39;shop_serial_area.serial&#39;,
                &#39;month_of_year&#39;:&#39;shop_serial_area.month_of_year&#39;,
                &#39;area&#39;:&#39;shop_serial_area.area&#39;,
            })
            # 排序
            data = data.sort_values([&#39;shop_serial_area.shop_no&#39;,&#39;shop_serial_area.serial&#39;,&#39;shop_serial_area.month_of_year&#39;])
            data.to_csv(file_path)
            # 更新超时时间
            self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_datas(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    save_dir=&#39;./data/sales_forecast/ur_bi_dw_data&#39;,
    logger:logging.Logger=None):
    ur_bi_get_datas = CustomUrBiGetDatas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
    try:
        # 店,系列,品类,年月,销售目标金额
        logger.info(&#39;正在查询年月销售目标金额数据...&#39;)
        ur_bi_get_datas.get_sales_goal_amt()
        logger.info(&#39;查询年月销售目标金额数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
def getdata_ur_bi_dw(
    host=&#39;10.2.32.22&#39;,
    port=21051,
    database=&#39;ur_ai_dw&#39;,
    auth_mechanism=&#39;LDAP&#39;,
    user=&#39;urbi&#39;,
    password=&#39;Ur#730xd&#39;,
    save_dir=&#39;./data/sales_forecast/ur_bi_dw_data&#39;,
    logger=None
):
    get_common_datas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        logger=logger
    )
    get_datas(
        host=host,
        port=port,
        database=database,
        auth_mechanism=auth_mechanism,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
pass
# 代码入口
# getdata_ur_bi_dw(
#     host=ur_bi_dw_host,
#     port=ur_bi_dw_port,
#     database=ur_bi_dw_database,
#     auth_mechanism=ur_bi_dw_auth_mechanism,
#     user=ur_bi_dw_user,
#     password=ur_bi_dw_password,
#     save_dir=ur_bi_dw_save_dir,
#     logger=logger
#     )

代码说明和领悟

每个类的具体作用说明,代码需要根据下面的文字说明进行“食用”:

(第一层)HiveHelper完成了连接数据库、关闭数据库连接、生成事务、执行、引擎、连接等功能

VarsHelper提供了一个简单的持久化功能,可以将对象以文件的形式存放在磁盘上。并提供设置值、获取值、判断值是否存在的方法

GlobalShareArgs提供了一个字典,并且提供了获取字典、设置字典、设置字典键值对、设置字典键的值、判断键是否在字典中、更新字典等方法

ShareArgs跟GlobalShareArgs类似,只是一开始字典的初始化的键值对比较多

(第二层)UrBiGetDataBase类,提供了线程锁字典、时间字典、超时判断字典,都是类变量;使用了HiveHelper类,但注意,不是继承。在具体的sql读数时,提供了线程固定和时间判断

(第三层)UrBiGetDatas类,获取hive数据库那边的日期数据、店铺数据、会员数据、天气数据、天气城市数据、商品数据、店铺生命周期数据、全国商品生命周期数据、商品开发码数数据、实际销售金额、实际配货金额、商品畅滞销数据、商品成本价数据、尺码映射数据等。

(第四层)get_common_data函数,使用URBiGetData类读取日期、店铺、天气、天气城市、货品、实际销量数据,并缓存到文件夹./yongjian/data/ur_bi_data下面

CustomUrBiGetData类,继承了UrBiGetDatasBase类,读取销售目标金额、点系列面积数据。

(这个也是第四层)get_datas函数,通过CustomUrBiGetData类,读取年月销售目标金额。

总的函数:(这个是总的调用入口函数)get_data_ur_bi_dw函数,调用了get_common_data和get_datas函数进行读取数据,然后将数据保存到某个文件夹目录下面。

举一反三,如果你不是hive数据库,你可以将第一层这个底层更换成mysql。主页有解释如果进行更换。第二层不需要改变,第三层就是你想要进行读取的数据表,不同的数据库你想要读取的数据表也不同,所以sql需要你在这里写,套用里面的方法即可,基本上就是修改sql就好了。

这种方法的好处在于,数据不会重复读取,并且读取的数据都可以得到高效的使用。

后续附上修改成mysql的一个例子代码

import logging
import pandas as pd
from impala.dbapi import connect
import sqlalchemy
from sqlalchemy.orm import sessionmaker
import os
import time
import os
import datetime
from dateutil.relativedelta import relativedelta
from typing import Dict, List
import logging
import threading
import pandas as pd
import pickle
class MySqlHelper(object):
    def __init__(
        self,
        host=&#39;192.168.15.144&#39;,
        port=3306,
        database=&#39;test_ims&#39;,
        user=&#39;spkjz_writer&#39;,
        password=&#39;7cmoP3QDtueVJQj2q4Az&#39;,
        logger:logging.Logger=None
        ):
        self.host = host
        self.port = port
        self.database = database
        self.user = user
        self.password = password
        self.logger = logger
        self.connection_str = &#39;mysql+pymysql://%s:%s@%s:%d/%s&#39; %(
            self.user, self.password, self.host, self.port, self.database
        )
        self.conn = None
        self.cursor = None
        self.engine = None
        self.session = None
    def create_table_code(self, file_name):
        &#39;&#39;&#39;创建表类代码&#39;&#39;&#39;
        os.system(f&#39;sqlacodegen {self.connection_str} > {file_name}&#39;)
        return self.conn
    def get_conn(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.conn is None:
            engine = self.get_engine()
            self.conn = engine.connect()
        return self.conn
    def get_engine(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.engine is None:
            self.engine = sqlalchemy.create_engine(self.connection_str)
        return self.engine
    def get_cursor(self):
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.cursor is None:
            self.cursor = self.conn.cursor()
        return self.cursor
    def get_session(self) -> sessionmaker:
        &#39;&#39;&#39;创建连接或获取连接&#39;&#39;&#39;
        if self.session is None:
            engine = self.get_engine()
            Session = sessionmaker(bind=engine)
            self.session = Session()
        return self.session
    def close_conn(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        if self.conn is not None:
            self.conn.close()
            self.conn = None
        self.dispose_engine()
    def close_session(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        if self.session is not None:
            self.session.close()
            self.session = None
        self.dispose_engine()
    def dispose_engine(self):
        &#39;&#39;&#39;释放engine&#39;&#39;&#39;
        if self.engine is not None:
            # self.engine.dispose(close=False)
            self.engine.dispose()
            self.engine = None
    def close_cursor(self):
        &#39;&#39;&#39;关闭cursor&#39;&#39;&#39;
        if self.cursor is not None:
            self.cursor.close()
            self.cursor = None
    def get_data(self, sql, auto_close=True) -> pd.DataFrame:
        &#39;&#39;&#39;查询数据&#39;&#39;&#39;
        conn = self.get_conn()
        data = None
        try:
            # 异常重试3次
            for i in range(3):
                try:
                    data = pd.read_sql(sql, conn)
                    break
                except Exception as ex:
                    if i == 2:
                        raise ex # 往外抛出异常
                    time.sleep(60) # 一分钟后重试
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            if auto_close:
                self.close_conn()
        return data
pass
class VarsHelper():
    def __init__(self, save_dir, auto_save=True):
        self.save_dir = save_dir
        self.auto_save = auto_save
        self.values = {}
        if not os.path.exists(os.path.dirname(self.save_dir)):
            os.makedirs(os.path.dirname(self.save_dir))
        if os.path.exists(self.save_dir):
            with open(self.save_dir, &#39;rb&#39;) as f:
                self.values = pickle.load(f)
                f.close()
    def set_value(self, key, value):
        self.values[key] = value
        if self.auto_save:
            self.save_file()
    def get_value(self, key):
        return self.values[key]
    def has_key(self, key):
        return key in self.values.keys()
    def save_file(self):
        with open(self.save_dir, &#39;wb&#39;) as f:
            pickle.dump(self.values, f)
            f.close()
pass
class GlobalShareArgs():
    args = {
        "debug": False
    }
    def get_args():
        return GlobalShareArgs.args
    def set_args(args):
        GlobalShareArgs.args = args
    def set_args_value(key, value):
        GlobalShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return GlobalShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in GlobalShareArgs.args.keys()
    def update(args):
        GlobalShareArgs.args.update(args)
pass
class ShareArgs():
    args = {
        "labels_dir":"./hjx/shop_group/month_w_amt/data/labels", # 标签目录
        "labels_output_dir":"./hjx/shop_group/month_w_amt/data/labels_output", # 聚类导出标签目录
        "common_datas_dir":"./hjx/data", # 共用数据目录。ur_bi_dw的公共
        "only_predict": False, # 只识别,不训练
        "delete_model": True, # 先删除模型,仅在训练时使用
        "export_excel": False, # 导出excel
        "classes": 12, # 聚类数
        "batch_size": 16,
        "hidden_size": 32,
        "max_nrof_epochs": 100,
        "learning_rate": 0.0005,
        "loss_type": "categorical_crossentropy",
        "avg_model_num": 10,
        "steps_per_epoch": 4.0, # 4.0
        "lr_callback_patience": 4, 
        "lr_callback_cooldown": 1,
        "early_stopping_callback_patience": 6,
        "get_data": True,
    }
    def get_args():
        return ShareArgs.args
    def set_args(args):
        ShareArgs.args = args
    def set_args_value(key, value):
        ShareArgs.args[key] = value
    def get_args_value(key, default_value=None):
        return ShareArgs.args.get(key, default_value)
    def contain_key(key):
        return key in ShareArgs.args.keys()
    def update(args):
        ShareArgs.args.update(args)
pass
class IMSGetDatasBase():
    # 线程锁列表,同保存路径共用锁
    lock_dict:Dict[str, threading.Lock] = {}
    # 时间列表,用于判断是否超时
    time_dict:Dict[str, datetime.datetime] = {}
    # 用于记录是否需要更新超时时间
    get_data_timeout_dict:Dict[str, bool] = {}
    def __init__(
        self,
        host=&#39;192.168.15.144&#39;,
        port=3306,
        database=&#39;test_ims&#39;,
        user=&#39;spkjz_writer&#39;,
        password=&#39;Ur#7cmoP3QDtueVJQj2q4Az&#39;,
        save_dir=None,
        logger:logging.Logger=None,
        ):
        self.save_dir = save_dir
        self.logger = logger
        self.db_helper = MySqlHelper(
            host=host,
            port=port,
            database=database,
            user=user,
            password=password,
            logger=logger
            )
        # 创建子目录
        if self.save_dir is not None and not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        self.vars_helper = None
        if GlobalShareArgs.get_args_value(&#39;debug&#39;):
            self.vars_helper = VarsHelper(&#39;./hjx/data/vars/IMSGetDatas&#39;) # 把超时时间保存到文件,注释该行即可停掉,只用于调试
    def close(self):
        &#39;&#39;&#39;关闭连接&#39;&#39;&#39;
        self.db_helper.close_conn()
    def get_last_time(self, key_name) -> bool:
        &#39;&#39;&#39;获取是否超时&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if self.vars_helper is not None and self.vars_helper.has_key(&#39;IMSGetDatasBase.time_list&#39;):
            IMSGetDatasBase.time_dict = self.vars_helper.get_value(&#39;IMSGetDatasBase.time_list&#39;)
        timeout = 12 # 12小时
        if GlobalShareArgs.get_args_value(&#39;debug&#39;):
            timeout = 24 # 24小时
        get_data_timeout = False
        if key_name not in IMSGetDatasBase.time_dict.keys() or (datetime.datetime.today() - IMSGetDatasBase.time_dict[key_name]).total_seconds()>(4*60*60):
            self.logger.info(&#39;超时%d小时,重新查数据:%s&#39;, timeout, key_name)
            # IMSGetDatasBase.time_list[key_name] = datetime.datetime.today()
            get_data_timeout = True
        else:
            self.logger.info(&#39;未超时%d小时,跳过查数据:%s&#39;, timeout, key_name)
        # if self.vars_helper is not None :
        #     self.vars_helper.set_value(&#39;IMSGetDatasBase.time_list&#39;, IMSGetDatasBase.time_list)
        IMSGetDatasBase.get_data_timeout_dict[key_name] = get_data_timeout
        return get_data_timeout
    def save_last_time(self, key_name):
        &#39;&#39;&#39;更新状态超时&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if IMSGetDatasBase.get_data_timeout_dict[key_name]:
            IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today()
        if self.vars_helper is not None :
            IMSGetDatasBase.time_dict[key_name] = datetime.datetime.today()
            self.vars_helper.set_value(&#39;IMSGetDatasBase.time_list&#39;, IMSGetDatasBase.time_dict)
    def get_lock(self, key_name) -> threading.Lock:
        &#39;&#39;&#39;获取锁&#39;&#39;&#39;
        # 转静态路径,确保唯一性
        key_name = os.path.abspath(key_name)
        if key_name not in IMSGetDatasBase.lock_dict.keys():
            IMSGetDatasBase.lock_dict[key_name] = threading.Lock()
        return IMSGetDatasBase.lock_dict[key_name]
    def get_data_of_date(
        self,
        save_dir,
        sql,
        sort_columns:List[str],
        del_index_list=[-1], # 删除最后下标
        start_date = datetime.datetime(2017, 1, 1), # 开始时间
        offset = relativedelta(months=3), # 时间间隔
        date_format_fun = lambda d: &#39;%04d%02d01&#39; % (d.year, d.month), # 查询语句中替代时间参数的格式化
        filename_format_fun = lambda d: &#39;%04d%02d.csv&#39; % (d.year, d.month), # 查询语句中替代时间参数的格式化
        stop_date = &#39;20700101&#39;, # 超过时间则停止
        ):
        &#39;&#39;&#39;分时间增量读取数据&#39;&#39;&#39;
        # 创建文件夹
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        else:
            #删除最后一个文件
            file_list = os.listdir(save_dir)
            if len(file_list)>0:
                file_list.sort()
                for del_index in del_index_list:
                    os.remove(os.path.join(save_dir,file_list[del_index]))
                    print(&#39;删除最后一个文件:&#39;, file_list[del_index])
        select_index = -1
        # start_date = datetime.datetime(2017, 1, 1)
        while True:
            end_date = start_date + offset
            start_date_str = date_format_fun(start_date)
            end_date_str = date_format_fun(end_date)
            self.logger.info(&#39;date: %s-%s&#39;, start_date_str, end_date_str)
            file_path = os.path.join(save_dir, filename_format_fun(start_date))
            # self.logger.info(&#39;file_path: %s&#39;, file_path)
            if not os.path.exists(file_path):
                data:pd.DataFrame = self.db_helper.get_data(sql % (start_date_str, end_date_str))
                if data is None:
                    break
                self.logger.info(&#39;data: %d&#39;, len(data))
                # self.logger.info(&#39;data: %d&#39;, data.columns)
                if len(data)>0:
                    select_index+=1
                    # 排序
                    data = data.sort_values(sort_columns)
                    data.to_csv(file_path)
                elif select_index!=-1:
                    break
                elif stop_date < start_date_str:
                    raise Exception("读取数据异常,时间超出最大值!")
            start_date = end_date
pass
class CustomIMSGetDatas(IMSGetDatasBase):
    def __init__(
        self,
        host=&#39;192.168.13.134&#39;,
        port=4000,
        database=&#39;test_ims&#39;,
        user=&#39;root&#39;,
        password=&#39;rootimmsadmin&#39;,
        save_dir=&#39;./hjx/data/export_ims_data&#39;,
        logger:logging.Logger=None
        ):
        self.save_dir = save_dir
        self.logger = logger
        super().__init__(
            host=host,
            port=port,
            database=database,
            user=user,
            password=password,
            save_dir=save_dir,
            logger=logger
            )
    def get_ims_w_amt_pro(self):
        &#39;&#39;&#39;年月系列占比数据&#39;&#39;&#39;
        file_path = os.path.join(self.save_dir,&#39;ims_w_amt_pro.csv&#39;)
        now_lock = self.get_lock(file_path)
        now_lock.acquire() # 加锁
        try:
            # 设置超时4小时才重新查数据
            # if not self.get_last_time(file_path):
            #     return
            sql = &#39;SELECT * FROM ims_w_amt_pro&#39;
            data:pd.DataFrame = self.db_helper.get_data(sql)
            data = data.rename(columns={
                &#39;serial_forecast_proportion&#39;: &#39;forecast_proportion&#39;,
            })
            data.to_csv(file_path)
            # # 更新超时时间
            # self.save_last_time(file_path)
        except Exception as ex:
            self.logger.exception(ex)
            raise ex # 往外抛出异常
        finally:
            now_lock.release() # 释放锁
pass
def get_datas(
    host=&#39;192.168.13.134&#39;,
    port=4000,
    database=&#39;test_ims&#39;,
    user=&#39;root&#39;,
    password=&#39;rootimmsadmin&#39;,
    save_dir=&#39;./hjx/data/export_ims_data&#39;,
    logger:logging.Logger=None
    ):
    ur_bi_get_datas = CustomIMSGetDatas(
        host=host,
        port=port,
        database=database,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
    try:
        # 年月系列占比数据
        logger.info(&#39;正在查询年月系列占比数据...&#39;)
        ur_bi_get_datas.get_ims_w_amt_pro()
        logger.info(&#39;查询年月系列占比数据完成!&#39;)
    except Exception as ex:
        logger.exception(ex)
        raise ex # 往外抛出异常
    finally:
        ur_bi_get_datas.close()
pass
def getdata_export_ims(
    host=&#39;192.168.13.134&#39;,
    port=4000,
    database=&#39;test_ims&#39;,
    user=&#39;root&#39;,
    password=&#39;rootimmsadmin&#39;,
    save_dir=&#39;./hjx/data/export_ims_data&#39;,
    logger:logging.Logger=None
    ):
    get_datas(
        host=host,
        port=port,
        database=database,
        user=user,
        password=password,
        save_dir=save_dir,
        logger=logger
    )
pass

以上是如何使用Python读取Hive数据库?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Python:探索其主要应用程序Python:探索其主要应用程序Apr 10, 2025 am 09:41 AM

Python在web开发、数据科学、机器学习、自动化和脚本编写等领域有广泛应用。1)在web开发中,Django和Flask框架简化了开发过程。2)数据科学和机器学习领域,NumPy、Pandas、Scikit-learn和TensorFlow库提供了强大支持。3)自动化和脚本编写方面,Python适用于自动化测试和系统管理等任务。

您可以在2小时内学到多少python?您可以在2小时内学到多少python?Apr 09, 2025 pm 04:33 PM

两小时内可以学到Python的基础知识。1.学习变量和数据类型,2.掌握控制结构如if语句和循环,3.了解函数的定义和使用。这些将帮助你开始编写简单的Python程序。

如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?如何在10小时内通过项目和问题驱动的方式教计算机小白编程基础?Apr 02, 2025 am 07:18 AM

如何在10小时内教计算机小白编程基础?如果你只有10个小时来教计算机小白一些编程知识,你会选择教些什么�...

如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?如何在使用 Fiddler Everywhere 进行中间人读取时避免被浏览器检测到?Apr 02, 2025 am 07:15 AM

使用FiddlerEverywhere进行中间人读取时如何避免被检测到当你使用FiddlerEverywhere...

Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Python 3.6加载Pickle文件报错"__builtin__"模块未找到怎么办?Apr 02, 2025 am 07:12 AM

Python3.6环境下加载Pickle文件报错:ModuleNotFoundError:Nomodulenamed...

如何提高jieba分词在景区评论分析中的准确性?如何提高jieba分词在景区评论分析中的准确性?Apr 02, 2025 am 07:09 AM

如何解决jieba分词在景区评论分析中的问题?当我们在进行景区评论分析时,往往会使用jieba分词工具来处理文�...

如何使用正则表达式匹配到第一个闭合标签就停止?如何使用正则表达式匹配到第一个闭合标签就停止?Apr 02, 2025 am 07:06 AM

如何使用正则表达式匹配到第一个闭合标签就停止?在处理HTML或其他标记语言时,常常需要使用正则表达式来�...

如何绕过Investing.com的反爬虫机制获取新闻数据?如何绕过Investing.com的反爬虫机制获取新闻数据?Apr 02, 2025 am 07:03 AM

攻克Investing.com的反爬虫策略许多人尝试爬取Investing.com(https://cn.investing.com/news/latest-news)的新闻数据时,常常�...

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器