近日,自然语言处理领域顶级会议 EMNLP 2022 在阿联酋首都阿布扎比举行。
今年的大会共有投稿 4190 篇,最终 829 篇论文被接收(715 篇长论文,114 篇论文),整体接收率为 20%,与往年差异不大。
大会于当地时间 12 月 11 日落幕,同时也公布了本届论文奖项,包括最佳长论文(1 篇)、最佳短论文(1 篇)、最佳 Demo 论文(1 篇)。
最佳长论文
论文:Abstract Visual Reasoning with Tangram Shapes
- 作者:Anya Ji , Noriyuki Kojima, Noah Rush, Alane Suhr, Wai Keen Vong , Robert D. Hawkins, Yoav Artzi
- 机构:康奈尔大学、纽约大学、艾伦研究所、普林斯顿大学
- 论文链接:https://arxiv.org/pdf/2211.16492.pdf
论文摘要:在这篇论文中,研究者介绍了「KiloGram」,一个用于研究人类和机器的抽象视觉推理的资源库。KiloGram 在两个方面极大地改进了现有资源。首先,研究者策划并数字化了 1016 个形状,创造了一个比现有工作中使用的集合大两个数量级的集合。这个集极大地增加了对整个命名变化范围的覆盖,提供了一个关于人类命名行为的更全面的视角。第二,该集合不是把每个七巧板当作一个单一的整体形状,而是当成由原始的拼图碎片构成的矢量图形。这种分解能够对整个形状和它们的部分进行推理。研究者利用这个新的数字化七巧板图形集合来收集大量的文本描述数据,反映了命名行为的高度多样性。
研究者利用众包来扩展注释过程,为每个形状收集多个注释,从而代表它所引起的注释的分布,而不是单一的样本。最终总共收集了 13404 个注释,每个注释都描述了一个完整的物体及其分割的部分。
KiloGram 的潜力是广泛的。研究者用该资源评估了最近的多模态模型的抽象视觉推理能力,并观察到预训练的权重表现出有限的抽象推理能力,而这一能力随着微调的进行而得到极大的改善。他们还观察到,明确的描述部分有助于人类和模型的抽象推理,特别是在对语言和视觉输入进行联合编码时。
图 1 是两个七巧板的例子,每个七巧板都有两个不同的注释。每个注释都包括整个形状的描述(黑体),对部分的分割(彩色),以及各部分的命名(与每个部分相连)。上面的例子显示了接近完美一致的低可变性,而下面的例子显示了语言和分割的分歧的高可变性。
KiloGram 地址:https://lil.nlp.cornell.edu/kilogram
本次大会的最佳长论文提名由 Kayo Yin 和 Graham Neubig 两位研究者获得。
论文:Interpreting Language Models with Contrastive Explanations
- 作者:Kayo Yin, Graham Neubig
论文摘要:模型的可解释性方法经常被用来解释 NLP 模型在诸如文本分类等任务上的决策,这些任务的输出空间相对较小。然而,当应用于语言生成时,输出空间往往由数以万计的 token 组成,这些方法无法提供翔实的解释。语言模型必须考虑各种特征来预测一个 token,如它的词性、数字、时态或语义。由于现有的解释方法将所有这些特征的证据合并成一个单一的解释,这对于人类的理解来说可解释性较差。
为了区分语言建模中的不同决策,研究者探讨了专注于对比性解释的语言模型。他们寻找到突出的输入 token,解释为什么模型预测了一个 token 而不是另一个 token。研究证明了在验证主要的语法现象方面,对比性解释比非对比性解释要好得多,而且它们大大改善了人类观察者的对比性模型可模拟性。研究者还确定了模型使用类似证据的对比性决策组,并且能够描述模型在各种语言生成决策中使用哪些输入 token。
代码地址:https://github.com/kayoyin/interpret-lm
最佳短论文
论文:Topic-Regularized Authorship Representation Learning
- 作者:Jitkapat Sawatphol、Nonthakit Chaiwong、Can Udomcharoenchaikit、Sarana Nutanong
- 机构:泰国 VISTEC 科学技术研究所
论文摘要:在这项研究中,研究者提出了 Authorship Representation Regularization,一个可以提高交叉主题性能的蒸馏框架,也可以处理未见过的 author。这种方法可以应用于任何 authorship 表征模型。实验结果显示,在交叉主题设置中,4/6 的性能得到了提升。同时,研究者分析表明,在具有大量主题的数据集中,跨主题设置的训练分片存在主题信息泄露问题,从而削弱了其评估跨主题属性的能力。
最佳 Demo 论文
论文:Evaluate & Evaluation on the Hub: Better Best Practices for Data and Model Measurements
- 作者:Leandro von Werra, Lewis Tunstall, Abhishek Thakur, Alexandra Sasha Luccioni 等
- 机构:Hugging Face
- 论文链接:https://arxiv.org/pdf/2210.01970.pdf
论文摘要:评估是机器学习 (ML) 的关键部分,该研究在 Hub 上引入了 Evaluate 和 Evaluation——一组有助于评估 ML 中的模型和数据集的工具。Evaluate 是一个库,用于比较不同的模型和数据集,支持各种指标。Evaluate 库旨在支持评估的可复现性、记录评估过程,并扩大评估范围以涵盖模型性能的更多方面。它包括针对各种领域和场景的 50 多个高效规范实现、交互式文档,并可轻松共享实现和评估结果。
项目地址:https://github.com/huggingface/evaluate
此外,研究者还推出了 Evaluation on the Hub,该平台可以在 Hugging Face Hub 上免费对超过 75000 个模型和 11000 个数据集进行大规模评估,只需单击一个按钮即可。
以上是EMNLP 2022大会正式落幕最佳长论文最佳短论文等奖项公布的详细内容。更多信息请关注PHP中文网其他相关文章!

生成式AI已经风靡了人工智能社区,无论是个人还是企业,都开始热衷于创建相关的模态转换应用,比如文生图、文生视频、文生音乐等等。最近呢,来自ServiceNowResearch、LIVIA等科研机构的几位研究者尝试基于文本描述生成论文中的图表。为此,他们提出了一种FigGen的新方法,相关论文还被ICLR2023收录为了TinyPaper。图片论文地址:https://arxiv.org/pdf/2306.00800.pdf也许有人会问了,生成论文中的图表有什么难的呢?这样做对于科研又有哪些帮助呢

正值AAAI 2023论文截止提交之际,知乎上突然出现了一张AI投稿群的匿名聊天截图。其中有人声称,自己可以提供「3000块一个strong accept」的服务。爆料一出,顿时引起了网友们的公愤。不过,先不要着急。知乎大佬「微调」表示,这大概率只是「口嗨」而已。据「微调」透露,打招呼和团伙作案这个是任何领域都不能避免的问题。随着openreview的兴起,cmt的各种弊端也越来越清楚,未来留给小圈子操作的空间会变小,但永远会有空间。因为这是个人的问题,不是投稿系统和机制的问题。引入open r

刚刚,CVPR 2023发文称:今年,我们收到了创纪录的9155份论文(比CVPR2022增加了12%),并录用了2360篇论文,接收率为25.78%。据统计,CVPR的投稿量在2010-2016的7年间仅从1724增加到2145。在2017年后则迅速飙升,进入快速增长期,2019年首次突破5000,至2022年投稿数已达到8161份。可以看到,今年提交了共9155份论文确实创下了最高记录。疫情放开后,今年的CVPR顶会将在加拿大举行。今年采用单轨会议的形式,并取消了传统Oral的评选。谷歌研究

自 2017 年首次举办以来,CoRL 已经成为了机器人学与机器学习交叉领域的全球顶级学术会议之一。CoRL 是面向机器人学习研究的 single-track 会议,涵盖机器人学、机器学习和控制等多个主题,包括理论与应用。2022年的CoRL大会于12月14日至18日在新西兰奥克兰举行。本届大会共收到504篇投稿,最终接收34篇Oral论文、163篇Poster论文,接收率为39%。目前,CoRL 2022 公布了最佳论文奖、最佳系统论文奖、特别创新奖等全部奖项。宾夕法尼亚大学GRASP实验

本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。面对ChatGPT,Nature终于坐不住了。本周,这家权威学术出版机构下场,针对ChatGPT代写学研文章、被列为作者等一系列问题,给了定性。具体来说,Nature列出两项原则:(1)任何大型语言模型工具(比如ChatGPT)都不能成为论文作者;(2)如在论文创作中用过相关工具,作者应在“方法”或“致谢”或适当的部分明确说明。现在,上述要求已经添进作者投稿指南中。近段时间,ChatGPT染指学研圈情况越来越多。去年1

用 ChatGPT 辅助写论文这件事,越来越靠谱了。 ChatGPT 发布以来,各个领域的从业者都在探索 ChatGPT 的应用前景,挖掘它的潜力。其中,学术文本的理解与编辑是一种极具挑战性的应用场景,因为学术文本需要较高的专业性、严谨性等,有时还需要处理公式、代码、图谱等特殊的内容格式。现在,一个名为「ChatGPT 学术优化(chatgpt_academic)」的新项目在 GitHub 上爆火,上线几天就在 GitHub 上狂揽上万 Star。项目地址:https://github.com/

目录:FastersortingalgorithmsdiscoveredusingdeepreinforcementlearningVideo-LLaMA:AnInstruction-tunedAudio-VisualLanguageModelforVideoUnderstandingPatch-based3DNaturalSceneGenerationfromaSingleExampleSpatio-temporalDiffusionPointProcessesSpQR:ASparse-Qua

在ChatGPT走红之后,很多关注技术的同学都在问一个问题:有没有什么学习资料可以让我们系统地了解ChatGPT背后的原理?由于OpenAI还没有发布ChatGPT相关论文,这一问题变得棘手起来。不过,从OpenAI关于ChatGPT的博客中我们知道,ChatGPT用到的方法和它的兄弟模型——InstructGPT一样,只不过InstructGPT是在GPT-3上微调的,而ChatGPT则是基于GPT-3.5。在数据收集工作上,二者也存在一些差别。博客链接:ht


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

Dreamweaver Mac版
视觉化网页开发工具

Atom编辑器mac版下载
最流行的的开源编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境