Docker
尽管之前久闻Docker的大名了,但是天资愚钝,对其到底是个啥东西一直摸不清,最近花了一段时间整理了一下,算是整理出一点头绪来。
官网 的介绍是这样的:
Docker is an open platform for developers and sysadmins to build, ship, and run distributed applications….
其实看完这句话还是不明白究竟是啥的,下面就慢慢解释。不过长话短说的话,把他想象成一个用了一种新颖方式实现的超轻量虚拟机,在大概效果上也是正确的。当然在实现的原理和应用上还是和VM有巨大差别的,并且专业的叫法是应用容器(Application Container)。
为啥要用容器?
那么应用容器长什么样子呢,一个做好的应用容器长得就好像一个装好了一组特定应用的虚拟机一样。比如我现在想用Mysql那我就找个装好Mysql的容器,运行起来,那么我就可以使用 Mysql 了。
那么我直接装个 Mysql 不就好了,何必还需要这个容器这么诡异的概念?话是这么说,可是你要真装Mysql的话可能要再装一堆依赖库,根据你的操作系统平台和版本进行设置,有时候还要从源代码编译报出一堆莫名其妙的错误,可不是这么好装。而且万一你机器挂了,所有的东西都要重新来,可能还要把配置在重新弄一遍。但是有了容器,你就相当于有了一个可以运行起来的虚拟机,只要你能运行容器,Mysql 的配置就全省了。而且一旦你想换台机器,直接把这个容器端起来,再放到另一个机器就好了。硬件,操作系统,运行环境什么的都不需要考虑了。
在公司中的一个很大的用途就是可以保证线下的开发环境、测试环境和线上的生产环境一致。当年在 Baidu 经常碰到这样的事情,开发把东西做好了给测试去测,一般会给一坨代码和一个介绍上线步骤的上线单。结果代码在测试机跑不起来,开发就跑来跑去看问题,一会儿啊这个配置文件忘了提交了,一会儿啊这个上线命令写错了。找到了一个 bug 提上去,开发一看,啊我怎么又忘了把这个命令写在上线单上了。类似的事情在上线的时候还会发生,变成啊你这个软件的版本和我机器上的不一样……在 Amazon 的时候,由于一个开发直接担任上述三个职位,而且有一套自动化部署的机制所以问题会少一点,但是上线的时候大家还是胆战心惊。
若果利用容器的话,那么开发直接在容器里开发,提测的时候把整个容器给测试,测好了把改动改在容器里再上线就好了。通过容器,整个开发、测试和生产环境可以保持高度的一致。
此外容器也和VM一样具有着一定的隔离性,各个容器之间的数据和内存空间相互隔离,可以保证一定的安全性。
那为啥不用VM?
那么既然容器和 VM 这么类似为啥不直接用 VM 还要整出个容器这么个概念来呢?Docker 容器相对于 VM 有以下几个优点:
-
启动速度快,容器通常在一秒内可以启动,而 VM 通常要更久
-
资源利用率高,一台普通 PC 可以跑上千个容器,你跑上千个 VM 试试
-
性能开销小, VM 通常需要额外的 CPU 和内存来完成 OS 的功能,这一部分占据了额外的资源
为啥相似的功能在性能上会有如此巨大的差距呢,其实这和他们的设计的理念是相关的。 VM 的设计图如下:
VM 的 Hypervisor 需要实现对硬件的虚拟化,并且还要搭载自己的操作系统,自然在启动速度和资源利用率以及性能上有比较大的开销。而 Docker 的设计图是这样的:
Docker 几乎就没有什么虚拟化的东西,并且直接复用了 Host 主机的 OS,在 Docker Engine 层面实现了调度和隔离重量一下子就降低了好几个档次。 Docker 的容器利用了 LXC ,管理利用了 namespaces 来做权限的控制和隔离, cgroups 来进行资源的配置,并且还通过 aufs 来进一步提高文件系统的资源利用率。
其中的 aufs 是个很有意思的东西,是 UnionFS 的一种。他的思想和 git 有些类似,可以把对文件系统的改动当成一次 commit 一层层的叠加。这样的话多个容器之间就可以共享他们的文件系统层次,每个容器下面都是共享的文件系统层次,上面再是各自对文件系统改动的层次,这样的话极大的节省了对存储的需求,并且也能加速容器的启动。
下一步
有了前面的这些介绍,应该对 Docker 到底是啥有些了解了吧, Docker 是 用Go语言编写的,源代码托管在 github 而且居然只有 1W 行就完成了这些功能。如果想尝试一下的话可以看 官方介绍 了,应该上手会容易一些了。博主也是新手,如有错误欢迎拍砖指正。
链接:http://oilbeater.com/docker/2014/06/29/what-is-docker.html

InnoDB使用redologs和undologs确保数据一致性和可靠性。1.redologs记录数据页修改,确保崩溃恢复和事务持久性。2.undologs记录数据原始值,支持事务回滚和MVCC。

EXPLAIN命令的关键指标包括type、key、rows和Extra。1)type反映查询的访问类型,值越高效率越高,如const优于ALL。2)key显示使用的索引,NULL表示无索引。3)rows预估扫描行数,影响查询性能。4)Extra提供额外信息,如Usingfilesort提示需要优化。

Usingtemporary在MySQL查询中表示需要创建临时表,常见于使用DISTINCT、GROUPBY或非索引列的ORDERBY。可以通过优化索引和重写查询避免其出现,提升查询性能。具体来说,Usingtemporary出现在EXPLAIN输出中时,意味着MySQL需要创建临时表来处理查询。这通常发生在以下情况:1)使用DISTINCT或GROUPBY时进行去重或分组;2)ORDERBY包含非索引列时进行排序;3)使用复杂的子查询或联接操作。优化方法包括:1)为ORDERBY和GROUPB

MySQL/InnoDB支持四种事务隔离级别:ReadUncommitted、ReadCommitted、RepeatableRead和Serializable。1.ReadUncommitted允许读取未提交数据,可能导致脏读。2.ReadCommitted避免脏读,但可能发生不可重复读。3.RepeatableRead是默认级别,避免脏读和不可重复读,但可能发生幻读。4.Serializable避免所有并发问题,但降低并发性。选择合适的隔离级别需平衡数据一致性和性能需求。

MySQL适合Web应用和内容管理系统,因其开源、高性能和易用性而受欢迎。1)与PostgreSQL相比,MySQL在简单查询和高并发读操作上表现更好。2)相较Oracle,MySQL因开源和低成本更受中小企业青睐。3)对比MicrosoftSQLServer,MySQL更适合跨平台应用。4)与MongoDB不同,MySQL更适用于结构化数据和事务处理。

MySQL索引基数对查询性能有显着影响:1.高基数索引能更有效地缩小数据范围,提高查询效率;2.低基数索引可能导致全表扫描,降低查询性能;3.在联合索引中,应将高基数列放在前面以优化查询。

MySQL学习路径包括基础知识、核心概念、使用示例和优化技巧。1)了解表、行、列、SQL查询等基础概念。2)学习MySQL的定义、工作原理和优势。3)掌握基本CRUD操作和高级用法,如索引和存储过程。4)熟悉常见错误调试和性能优化建议,如合理使用索引和优化查询。通过这些步骤,你将全面掌握MySQL的使用和优化。

MySQL在现实世界的应用包括基础数据库设计和复杂查询优化。1)基本用法:用于存储和管理用户数据,如插入、查询、更新和删除用户信息。2)高级用法:处理复杂业务逻辑,如电子商务平台的订单和库存管理。3)性能优化:通过合理使用索引、分区表和查询缓存来提升性能。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 英文版
推荐:为Win版本,支持代码提示!

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

ZendStudio 13.5.1 Mac
功能强大的PHP集成开发环境

Dreamweaver Mac版
视觉化网页开发工具

Dreamweaver CS6
视觉化网页开发工具