前言
pandas
的 IO
API
是一组顶层的 reader
函数,比如 pandas.read_csv()
,会返回一个 pandas
对象。
而相应的 writer
函数是对象方法,如 DataFrame.to_csv()
。
注意:后面会用到 StringIO
,请确保导入
# python3 from io import StringIO # python2 from StringIO import StringIO
1 CSV 和文本文件
读取文本文件的主要函数是 read_csv()
1 参数解析
read_csv()
接受以下常用参数:
1.1 基础
filepath_or_buffer
: 变量
可以是文件路径、文件
URL
或任何带有read()
函数的对象
sep
: str
,默认 ,
,对于 read_table
是 \t
文件分隔符,如果设置为
None
,则C
引擎无法自动检测分隔符,而Python
引擎可以通过内置的嗅探器工具自动检测分隔符。此外,如果设置的字符长度大于
1
,且不是'\s+'
,那么该字符串会被解析为正则表达式,且强制使用Python
解析引擎。例如
'\\r\\t'
,但是正则表达式容易忽略文本中的引用数据。
delimiter
: str
, 默认为 None
sep
的替代参数,功能一致
1.2 列、索引、名称
header
: int
或 list
, 默认为 'infer'
用作列名的行号,默认行为是对列名进行推断:
如果未指定
names
参数其行为类似于header=0
,即从读取的第一行开始推断。如果设置了
names
,则行为与header=None
相同。也可以为
header
设置列表,表示多级列名。如[0,1,3]
,未指定的行(这里是2
)将会被跳过,如果skip_blank_lines=True
,则会跳过空行和注释的行。因此header=0
并不是代表文件的第一行
names
: array-like
, 默认为 None
需要设置的列名列表,如果文件中不包含标题行,则应显式传递
header=None
,且此列表中不允许有重复值。
index_col
: int
, str
, sequence of int/str
, False
, 默认为 None
用作
DataFrame
的索引的列,可以字符串名称或列索引的形式给出。如果指定了列表,则使用MultiIndex
注意:
index_col=False
可用于强制pandas
不要将第一列用作索引。例如,当您的文件是每行末尾都带有一个分隔符的错误文件时。
usecols
: 列表或函数, 默认为 None
只读取指定的列。如果是列表,则所有元素都必须是位置(即文件列中的整数索引)或字符串,这些字符串必须与
names
参数提供的或从文档标题行推断出的列名相对应。列表中的顺序会被忽略,即
usecols=[0, 1]
等价于[1, 0]
如果是可调用函数,将会根据列名计算,返回可调用函数计算为
True
的名称
In [1]: import pandas as pd In [2]: from io import StringIO In [3]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [4]: pd.read_csv(StringIO(data)) Out[4]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [5]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ["COL1", "COL3"]) Out[5]: col1 col3 0 a 1 1 a 2 2 c 3
使用此参数可以大大加快解析时间并降低内存使用
squeeze
: boolean
, 默认为 False
如果解析的数据只包含一列,那么返回一个
Series
prefix
: str
, 默认为 None
当没有标题时,添加到自动生成的列号的前缀,例如
'X'
表示X0
,X1
...
mangle_dupe_cols
: boolean
, 默认为 True
重复的列将被指定为
'X'
,'X.1'
…'X.N'
,而不是'X'
... 。如果在列中有重复的名称,传递False
将导致数据被覆盖
1.3 常规解析配置
dtype
: 类型名或类型字典(column -> type
), 默认为 None
数据或列的数据类型。例如。
{'a':np.float64,'b':np.int32}
engine
: {'c', 'python'}
要使用的解析器引擎。
C
引擎更快,而Python
引擎目前功能更完整
converters
: dict
, 默认为 None
用于在某些列中对值进行转换的函数字典。键可以是整数,也可以是列名
true_values
: list
, 默认为 None
数据值解析为
True
false_values
: list
, 默认为 None
数据值解析为
False
skipinitialspace
: boolean
, 默认为 False
跳过分隔符之后的空格
skiprows
: 整数或整数列表, 默认为 None
在文件开头要跳过的行号(索引为
0
)或要跳过的行数如果可调用函数,则对索引应用函数,如果返回
True
,则应跳过该行,否则返回False
In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [7]: pd.read_csv(StringIO(data)) Out[7]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0) Out[8]: col1 col2 col3 0 a b 2
skipfooter
: int
, 默认为 0
需要跳过文件末尾的行数(不支持
C
引擎)
nrows
: int
, 默认为 None
要读取的文件行数,对于读取大文件很有用
memory_map
: boolean
, 默认为 False
如果为
filepath_or_buffer
参数指定了文件路径,则将文件对象直接映射到内存中,然后直接从那里访问数据。使用此选项可以提高性能,因为不再有任何I/O
开销
1.4 NA 和缺失数据处理
na_values
: scalar
, str
, list-like
, dict
, 默认为 None
需要转换为
NA
值的字符串
keep_default_na
: boolean
, 默认为 True
解析数据时是否包含默认的
NaN
值。根据是否传入na_values
,其行为如下keep_default_na=True
, 且指定了na_values
,na_values
将会与默认的NaN
一起被解析keep_default_na=True
, 且未指定na_values
, 只解析默认的NaN
keep_default_na=False
, 且指定了na_values
, 只解析na_values
指定的NaN
keep_default_na=False
, 且未指定na_values
, 字符串不会被解析为NaN
注意:如果 na_filter=False
,那么 keep_default_na
和 na_values
参数将被忽略
na_filter
: boolean
, 默认为 True
检测缺失值标记(空字符串和
na_values
的值)。在没有任何NA
的数据中,设置na_filter=False
可以提高读取大文件的性能
skip_blank_lines
: boolean
, 默认为 True
如果为
True
,则跳过空行,而不是解释为NaN
值
1.5 日期时间处理
parse_dates
: 布尔值、列表或嵌套列表、字典, 默认为 False
.
如果为
True
-> 尝试解析索引如果为
[1, 2, 3]
-> 尝试将1, 2, 3
列解析为分隔的日期如果为
[[1, 3]]
-> 将1, 3
列解析为单个日期列如果为
{'foo': [1, 3]}
-> 将1, 3
列作为日期并设置列名为foo
infer_datetime_format
: 布尔值, 默认为 False
如果设置为
True
且设置了parse_dates
,则尝试推断datetime
格式以加快处理速度
date_parser
: 函数, 默认为 None
用于将字符串序列转换为日期时间实例数组的函数。默认使用
dateutil.parser.parser
进行转换,pandas
将尝试以三种不同的方式调用date_parser
传递一个或多个数组(
parse_dates
定义的列)作为参数;将
parse_dates
定义的列中的字符串值连接到单个数组中,并将其传递;使用一个或多个字符串(对应于
parse_dates
定义的列)作为参数,对每一行调用date_parser
一次。
dayfirst
: 布尔值, 默认为 False
DD/MM
格式的日期
cache_dates
: 布尔值, 默认为 True
如果为
True
,则使用唯一的、经过转换的日期缓存来应用datetime
转换。在解析重复的日期字符串,特别是带有时区偏移量的日期字符串时,可能会显著提高速度。
1.6 迭代
iterator
: boolean
, 默认为 False
返回
TextFileReader
对象以进行迭代或使用get_chunk()
来获取块
1.7 引用、压缩和文件格式
compression
: {'infer', 'gzip', 'bz2', 'zip', 'xz', None, dict}
, 默认为 'infer'
用于对磁盘数据进行即时解压缩。如果为
"infer"
,则如果filepath_or_buffer
是文件路径且以".gz"
,".bz2"
,".zip"
或".xz"
结尾,则分别使用gzip
,bz2
,zip
或xz
解压,否则不进行解压缩。如果使用
"zip"
,则ZIP
文件必须仅包含一个要读取的数据文件。设置为None
表示不解压也可以使用字典的方式,键为
method
的值从{'zip', 'gzip', 'bz2'}
中选择。例如
compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
thousandsstr
, 默认为 None
数值在千位的分隔符
decimal
: str
, 默认为 '.'
小数点
float_precision
: string
, 默认为 None
指定
C
引擎应该使用哪个转换器来处理浮点值。普通转换器的选项为None
,高精度转换器的选项为high
,双向转换器的选项为round_trip
。
quotechar
: str
(长度为 1
)
用于表示被引用数据的开始和结束的字符。带引号的数据里的分隔符将被忽略
comment
: str
, 默认为 None
用于跳过该字符开头的行,例如,如果
comment='#'
,将会跳过#
开头的行
encoding
: str
, 默认为 None
设置编码格式
1.8 错误处理
error_bad_linesboolean
, 默认为 True
默认情况下,字段太多的行(例如,带有太多逗号的
csv
文件)会引发异常,并且不会返回任何DataFrame
。如果设置为
False
,则这些坏行将会被删除
warn_bad_linesboolean
, 默认为 True
如果
error_bad_lines=False
且warn_bad_lines=True
,每个坏行都会输出一个警告
2. 指定数据列的类型
您可以指示整个 DataFrame
或各列的数据类型
In [9]: import numpy as np In [10]: data = "a,b,c,d\n1,2,3,4\n5,6,7,8\n9,10,11" In [11]: print(data) a,b,c,d 1,2,3,4 5,6,7,8 9,10,11 In [12]: df = pd.read_csv(StringIO(data), dtype=object) In [13]: df Out[13]: a b c d 0 1 2 3 4 1 5 6 7 8 2 9 10 11 NaN In [14]: df["a"][0] Out[14]: '1' In [15]: df = pd.read_csv(StringIO(data), dtype={"b": object, "c": np.float64, "d": "Int64"}) In [16]: df.dtypes Out[16]: a int64 b object c float64 d Int64 dtype: object
你可以使用 read_csv()
的 converters
参数,统一某列的数据类型
In [17]: data = "col_1\n1\n2\n'A'\n4.22" In [18]: df = pd.read_csv(StringIO(data), converters={"col_1": str}) In [19]: df Out[19]: col_1 0 1 1 2 2 'A' 3 4.22 In [20]: df["col_1"].apply(type).value_counts() Out[20]: <class 'str'> 4 Name: col_1, dtype: int64
或者,您可以在读取数据后使用 to_numeric()
函数强制转换类型
In [21]: df2 = pd.read_csv(StringIO(data)) In [22]: df2["col_1"] = pd.to_numeric(df2["col_1"], errors="coerce") In [23]: df2 Out[23]: col_1 0 1.00 1 2.00 2 NaN 3 4.22 In [24]: df2["col_1"].apply(type).value_counts() Out[24]: <class 'float'> 4 Name: col_1, dtype: int64
它将所有有效的数值转换为浮点数,而将无效的解析为 NaN
最后,如何处理包含混合类型的列取决于你的具体需要。在上面的例子中,如果您只想要将异常的数据转换为 NaN
,那么 to_numeric()
可能是您的最佳选择。
然而,如果您想要强制转换所有数据,而无论类型如何,那么使用 read_csv()
的 converters
参数会更好
注意
在某些情况下,读取包含混合类型列的异常数据将导致数据集不一致。
如果您依赖 pandas
来推断列的类型,解析引擎将继续推断数据块的类型,而不是一次推断整个数据集。
In [25]: col_1 = list(range(500000)) + ["a", "b"] + list(range(500000)) In [26]: df = pd.DataFrame({"col_1": col_1}) In [27]: df.to_csv("foo.csv") In [28]: mixed_df = pd.read_csv("foo.csv") In [29]: mixed_df["col_1"].apply(type).value_counts() Out[29]: <class 'int'> 737858 <class 'str'> 262144 Name: col_1, dtype: int64 In [30]: mixed_df["col_1"].dtype Out[30]: dtype('O')
这就导致 mixed_df
对于列的某些块包含 int
类型,而对于其他块则包含 str
,这是由于读取的数据是混合类型。
以上是Python数据处理pandas中使用CSV作为IO工具的读写操作的详细内容。更多信息请关注PHP中文网其他相关文章!

Inpython,YouAppendElementStoAlistusingTheAppend()方法。1)useappend()forsingleelements:my_list.append(4).2)useextend()orextend()或= formultiplelements:my_list.extend.extend(emote_list)ormy_list = [4,5,6] .3)useInsert()forspefificpositions:my_list.insert(1,5).beaware

调试shebang问题的方法包括:1.检查shebang行确保是脚本首行且无前置空格;2.验证解释器路径是否正确;3.直接调用解释器运行脚本以隔离shebang问题;4.使用strace或truss跟踪系统调用;5.检查环境变量对shebang的影响。

pythonlistscanbemanipulationusesseveralmethodstoremovelements:1)theremove()MethodRemovestHefirStocCurrenceOfAstePecifiedValue.2)thepop()thepop()methodremovesandremovesandurturnturnsananelementatagivenIndex.3)

pythristssupportnumereperations:1)addingElementSwithAppend(),Extend(),andInsert()。2)emovingItemSusingRemove(),pop(),andclear(),and clear()。3)访问andmodifyingandmodifyingwithIndexingAndexingAndSlicing.4)

使用NumPy创建多维数组可以通过以下步骤实现:1)使用numpy.array()函数创建数组,例如np.array([[1,2,3],[4,5,6]])创建2D数组;2)使用np.zeros(),np.ones(),np.random.random()等函数创建特定值填充的数组;3)理解数组的shape和size属性,确保子数组长度一致,避免错误;4)使用np.reshape()函数改变数组形状;5)注意内存使用,确保代码清晰高效。

播放innumpyisamethodtoperformoperationsonArraySofDifferentsHapesbyAutapityallate AligningThem.itSimplifififiesCode,增强可读性,和Boostsperformance.Shere'shore'showitworks:1)较小的ArraySaraySaraysAraySaraySaraySaraySarePaddedDedWiteWithOnestOmatchDimentions.2)

forpythondataTastorage,choselistsforflexibilityWithMixedDatatypes,array.ArrayFormeMory-effficityHomogeneousnumericalData,andnumpyArraysForAdvancedNumericalComputing.listsareversareversareversareversArversatilebutlessEbutlesseftlesseftlesseftlessforefforefforefforefforefforefforefforefforefforlargenumerdataSets; arrayoffray.array.array.array.array.array.ersersamiddreddregro


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。