搜索
首页后端开发Python教程如何使用Python进行Excel自动化操作?

一、Python 操作 Excel 的常用库

在开始操作 Excel 之前,你需要安装 Python 和一些相关库。可以使用 pip 安装以下库,或者使用专业的 python 客户端:pycharm,快速安装 python 和相关库。

  • pandas:用于处理 Excel 文件和数据

  • openpyxl:用于读取和写入 Excel 文件

  • xlrd:用于读取 Excel 文件

  • xlwt:用于写入 Excel 文件

1. 使用第三方库 openpyxl

openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的 Python 库。它可以读取和写入 Excel 文件,支持多个工作表、图表等。

示例代码:

import openpyxl

# 打开 Excel 文件
workbook = openpyxl.load_workbook('example.xlsx')

# 获取所有工作表名
sheet_names = workbook.sheetnames
print(sheet_names)

# 获取指定工作表
sheet = workbook['Sheet1']

# 获取单元格数据
cell = sheet['A1']
print(cell.value)

# 修改单元格数据
sheet['A1'] = 'Hello World'

# 保存 Excel 文件
workbook.save('example.xlsx')

2. 使用第三方库 xlrd 和 xlwt

xlrd 和 xlwt 分别用于读取和写入 Excel 文件,支持多个工作表,但不支持 Excel 2010 xlsx/xlsm/xltx/xltm 格式。

示例代码:

import xlrd
import xlwt

# 打开 Excel 文件
workbook = xlrd.open_workbook('example.xls')

# 获取所有工作表名
sheet_names = workbook.sheet_names()
print(sheet_names)

# 获取指定工作表
sheet = workbook.sheet_by_name('Sheet1')

# 获取单元格数据
cell = sheet.cell(0, 0)
print(cell.value)

# 修改单元格数据
new_workbook = xlwt.Workbook()
new_sheet = new_workbook.add_sheet('Sheet1')
new_sheet.write(0, 0, 'Hello World')
new_workbook.save('example.xls')

3. 使用 pandas 库

pandas 是一个用于数据分析的 Python 库,也可以用于读写 Excel 文件,支持多个工作表,但不支持 Excel 2010 xlsx/xlsm/xltx/xltm 格式。

示例代码:

import pandas as pd

# 读取 Excel 文件
df = pd.read_excel('example.xls', sheet_name='Sheet1')

# 获取单元格数据
value = df.iloc[0, 0]
print(value)

# 修改单元格数据
df.iloc[0, 0] = 'Hello World'
df.to_excel('example.xls', index=False)

二、Python 操作 excel 的 10 个常用方法

1. 读取 Excel 文件

使用 pandas 库中的 read_excel()函数可以读取 Excel 文件。示例代码如下:

import pandas as pd

# 读取Excel文件
df = pd.read_excel('example.xlsx')

2. 写入 Excel 文件

使用 pandas 库中的 to_excel()函数可以将数据写入 Excel 文件。示例代码如下:

import pandas as pd

# 将数据写入Excel文件
df.to_excel('example.xlsx', index=False)

3. 插入行或列

使用 pandas 库中的 append()函数可以插入行或列。示例代码如下:

import pandas as pd

# 插入行
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df = df.append({'A': 4, 'B': 7}, ignore_index=True)

# 插入列
df['C'] = [7, 8, 9, 10]

4. 删除行或列

使用 pandas 库中的 drop()函数可以删除行或列。示例代码如下:

import pandas as pd

# 删除行
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df = df.drop(1)

# 删除列
df = df.drop('B', axis=1)

5. 修改单元格值

使用 pandas 库中的 at()函数或.iat()函数可以修改单元格的值。示例代码如下:

import pandas as pd

# 修改单元格值
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df.at[1, 'B'] = 7

# 使用.iat()函数修改单元格值
df.iat[0, 1] = 8

6. 查找单元格值

使用 pandas 库中的.loc()函数或.iloc()函数可以查找单元格的值。示例代码如下:

import pandas as pd

# 查找单元格值
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
value = df.loc[1, 'B']

# 使用.iloc()函数查找单元格值
value = df.iloc[1, 1]

7. 排序数据

使用 pandas 库中的 sort_values()函数可以对数据进行排序。示例代码如下:

import pandas as pd

# 对数据进行排序
df = pd.DataFrame({'A': [1, 3, 2], 'B': [4, 6, 5]})
df = df.sort_values(by='A')

8. 合并数据

使用 pandas 库中的 merge()函数可以合并数据。示例代码如下:

import pandas as pd

# 合并数据
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [1, 2, 4], 'C': [7, 8, 9]})
df = pd.merge(df1, df2, on='A')

9. 分组数据

使用 pandas 库中的 groupby()函数可以对数据进行分组。示例代码如下:

import pandas as pd

# 分组数据
df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                   'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C': [1, 2, 3, 4, 5, 6, 7, 8]})
grouped = df.groupby(['A', 'B'])

10. 计算数据统计量

使用 pandas 库中的 describe()函数可以计算数据的统计量。示例代码如下:

import pandas as pd

# 计算数据统计量
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
desc = df.describe()

以上是如何使用Python进行Excel自动化操作?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Python中的合并列表:选择正确的方法Python中的合并列表:选择正确的方法May 14, 2025 am 12:11 AM

Tomergelistsinpython,YouCanusethe操作员,estextMethod,ListComprehension,Oritertools

如何在Python 3中加入两个列表?如何在Python 3中加入两个列表?May 14, 2025 am 12:09 AM

在Python3中,可以通过多种方法连接两个列表:1)使用 运算符,适用于小列表,但对大列表效率低;2)使用extend方法,适用于大列表,内存效率高,但会修改原列表;3)使用*运算符,适用于合并多个列表,不修改原列表;4)使用itertools.chain,适用于大数据集,内存效率高。

Python串联列表字符串Python串联列表字符串May 14, 2025 am 12:08 AM

使用join()方法是Python中从列表连接字符串最有效的方法。1)使用join()方法高效且易读。2)循环使用 运算符对大列表效率低。3)列表推导式与join()结合适用于需要转换的场景。4)reduce()方法适用于其他类型归约,但对字符串连接效率低。完整句子结束。

Python执行,那是什么?Python执行,那是什么?May 14, 2025 am 12:06 AM

pythonexecutionistheprocessoftransformingpypythoncodeintoExecutablestructions.1)InternterPreterReadSthecode,ConvertingTingitIntObyTecode,whepythonvirtualmachine(pvm)theglobalinterpreterpreterpreterpreterlock(gil)the thepythonvirtualmachine(pvm)

Python:关键功能是什么Python:关键功能是什么May 14, 2025 am 12:02 AM

Python的关键特性包括:1.语法简洁易懂,适合初学者;2.动态类型系统,提高开发速度;3.丰富的标准库,支持多种任务;4.强大的社区和生态系统,提供广泛支持;5.解释性,适合脚本和快速原型开发;6.多范式支持,适用于各种编程风格。

Python:编译器还是解释器?Python:编译器还是解释器?May 13, 2025 am 12:10 AM

Python是解释型语言,但也包含编译过程。1)Python代码先编译成字节码。2)字节码由Python虚拟机解释执行。3)这种混合机制使Python既灵活又高效,但执行速度不如完全编译型语言。

python用于循环与循环时:何时使用哪个?python用于循环与循环时:何时使用哪个?May 13, 2025 am 12:07 AM

useeAforloopWheniteratingOveraseQuenceOrforAspecificnumberoftimes; useAwhiLeLoopWhenconTinuingUntilAcIntiment.ForloopSareIdeAlforkNownsences,而WhileLeleLeleLeleLoopSituationSituationSituationsItuationSuationSituationswithUndEtermentersitations。

Python循环:最常见的错误Python循环:最常见的错误May 13, 2025 am 12:07 AM

pythonloopscanleadtoerrorslikeinfiniteloops,modifyingListsDuringteritation,逐个偏置,零indexingissues,andnestedloopineflinefficiencies

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具