搜索
首页后端开发Python教程如何使用Python进行Excel自动化操作?

一、Python 操作 Excel 的常用库

在开始操作 Excel 之前,你需要安装 Python 和一些相关库。可以使用 pip 安装以下库,或者使用专业的 python 客户端:pycharm,快速安装 python 和相关库。

  • pandas:用于处理 Excel 文件和数据

  • openpyxl:用于读取和写入 Excel 文件

  • xlrd:用于读取 Excel 文件

  • xlwt:用于写入 Excel 文件

1. 使用第三方库 openpyxl

openpyxl 是一个用于读写 Excel 2010 xlsx/xlsm/xltx/xltm 文件的 Python 库。它可以读取和写入 Excel 文件,支持多个工作表、图表等。

示例代码:

import openpyxl

# 打开 Excel 文件
workbook = openpyxl.load_workbook('example.xlsx')

# 获取所有工作表名
sheet_names = workbook.sheetnames
print(sheet_names)

# 获取指定工作表
sheet = workbook['Sheet1']

# 获取单元格数据
cell = sheet['A1']
print(cell.value)

# 修改单元格数据
sheet['A1'] = 'Hello World'

# 保存 Excel 文件
workbook.save('example.xlsx')

2. 使用第三方库 xlrd 和 xlwt

xlrd 和 xlwt 分别用于读取和写入 Excel 文件,支持多个工作表,但不支持 Excel 2010 xlsx/xlsm/xltx/xltm 格式。

示例代码:

import xlrd
import xlwt

# 打开 Excel 文件
workbook = xlrd.open_workbook('example.xls')

# 获取所有工作表名
sheet_names = workbook.sheet_names()
print(sheet_names)

# 获取指定工作表
sheet = workbook.sheet_by_name('Sheet1')

# 获取单元格数据
cell = sheet.cell(0, 0)
print(cell.value)

# 修改单元格数据
new_workbook = xlwt.Workbook()
new_sheet = new_workbook.add_sheet('Sheet1')
new_sheet.write(0, 0, 'Hello World')
new_workbook.save('example.xls')

3. 使用 pandas 库

pandas 是一个用于数据分析的 Python 库,也可以用于读写 Excel 文件,支持多个工作表,但不支持 Excel 2010 xlsx/xlsm/xltx/xltm 格式。

示例代码:

import pandas as pd

# 读取 Excel 文件
df = pd.read_excel('example.xls', sheet_name='Sheet1')

# 获取单元格数据
value = df.iloc[0, 0]
print(value)

# 修改单元格数据
df.iloc[0, 0] = 'Hello World'
df.to_excel('example.xls', index=False)

二、Python 操作 excel 的 10 个常用方法

1. 读取 Excel 文件

使用 pandas 库中的 read_excel()函数可以读取 Excel 文件。示例代码如下:

import pandas as pd

# 读取Excel文件
df = pd.read_excel('example.xlsx')

2. 写入 Excel 文件

使用 pandas 库中的 to_excel()函数可以将数据写入 Excel 文件。示例代码如下:

import pandas as pd

# 将数据写入Excel文件
df.to_excel('example.xlsx', index=False)

3. 插入行或列

使用 pandas 库中的 append()函数可以插入行或列。示例代码如下:

import pandas as pd

# 插入行
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df = df.append({'A': 4, 'B': 7}, ignore_index=True)

# 插入列
df['C'] = [7, 8, 9, 10]

4. 删除行或列

使用 pandas 库中的 drop()函数可以删除行或列。示例代码如下:

import pandas as pd

# 删除行
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df = df.drop(1)

# 删除列
df = df.drop('B', axis=1)

5. 修改单元格值

使用 pandas 库中的 at()函数或.iat()函数可以修改单元格的值。示例代码如下:

import pandas as pd

# 修改单元格值
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df.at[1, 'B'] = 7

# 使用.iat()函数修改单元格值
df.iat[0, 1] = 8

6. 查找单元格值

使用 pandas 库中的.loc()函数或.iloc()函数可以查找单元格的值。示例代码如下:

import pandas as pd

# 查找单元格值
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
value = df.loc[1, 'B']

# 使用.iloc()函数查找单元格值
value = df.iloc[1, 1]

7. 排序数据

使用 pandas 库中的 sort_values()函数可以对数据进行排序。示例代码如下:

import pandas as pd

# 对数据进行排序
df = pd.DataFrame({'A': [1, 3, 2], 'B': [4, 6, 5]})
df = df.sort_values(by='A')

8. 合并数据

使用 pandas 库中的 merge()函数可以合并数据。示例代码如下:

import pandas as pd

# 合并数据
df1 = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
df2 = pd.DataFrame({'A': [1, 2, 4], 'C': [7, 8, 9]})
df = pd.merge(df1, df2, on='A')

9. 分组数据

使用 pandas 库中的 groupby()函数可以对数据进行分组。示例代码如下:

import pandas as pd

# 分组数据
df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                   'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                   'C': [1, 2, 3, 4, 5, 6, 7, 8]})
grouped = df.groupby(['A', 'B'])

10. 计算数据统计量

使用 pandas 库中的 describe()函数可以计算数据的统计量。示例代码如下:

import pandas as pd

# 计算数据统计量
df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})
desc = df.describe()

以上是如何使用Python进行Excel自动化操作?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Python vs. C:了解关键差异Python vs. C:了解关键差异Apr 21, 2025 am 12:18 AM

Python和C 各有优势,选择应基于项目需求。1)Python适合快速开发和数据处理,因其简洁语法和动态类型。2)C 适用于高性能和系统编程,因其静态类型和手动内存管理。

Python vs.C:您的项目选择哪种语言?Python vs.C:您的项目选择哪种语言?Apr 21, 2025 am 12:17 AM

选择Python还是C 取决于项目需求:1)如果需要快速开发、数据处理和原型设计,选择Python;2)如果需要高性能、低延迟和接近硬件的控制,选择C 。

达到python目标:每天2小时的力量达到python目标:每天2小时的力量Apr 20, 2025 am 12:21 AM

通过每天投入2小时的Python学习,可以有效提升编程技能。1.学习新知识:阅读文档或观看教程。2.实践:编写代码和完成练习。3.复习:巩固所学内容。4.项目实践:应用所学于实际项目中。这样的结构化学习计划能帮助你系统掌握Python并实现职业目标。

最大化2小时:有效的Python学习策略最大化2小时:有效的Python学习策略Apr 20, 2025 am 12:20 AM

在两小时内高效学习Python的方法包括:1.回顾基础知识,确保熟悉Python的安装和基本语法;2.理解Python的核心概念,如变量、列表、函数等;3.通过使用示例掌握基本和高级用法;4.学习常见错误与调试技巧;5.应用性能优化与最佳实践,如使用列表推导式和遵循PEP8风格指南。

在Python和C之间进行选择:适合您的语言在Python和C之间进行选择:适合您的语言Apr 20, 2025 am 12:20 AM

Python适合初学者和数据科学,C 适用于系统编程和游戏开发。1.Python简洁易用,适用于数据科学和Web开发。2.C 提供高性能和控制力,适用于游戏开发和系统编程。选择应基于项目需求和个人兴趣。

Python与C:编程语言的比较分析Python与C:编程语言的比较分析Apr 20, 2025 am 12:14 AM

Python更适合数据科学和快速开发,C 更适合高性能和系统编程。1.Python语法简洁,易于学习,适用于数据处理和科学计算。2.C 语法复杂,但性能优越,常用于游戏开发和系统编程。

每天2小时:Python学习的潜力每天2小时:Python学习的潜力Apr 20, 2025 am 12:14 AM

每天投入两小时学习Python是可行的。1.学习新知识:用一小时学习新概念,如列表和字典。2.实践和练习:用一小时进行编程练习,如编写小程序。通过合理规划和坚持不懈,你可以在短时间内掌握Python的核心概念。

Python与C:学习曲线和易用性Python与C:学习曲线和易用性Apr 19, 2025 am 12:20 AM

Python更易学且易用,C 则更强大但复杂。1.Python语法简洁,适合初学者,动态类型和自动内存管理使其易用,但可能导致运行时错误。2.C 提供低级控制和高级特性,适合高性能应用,但学习门槛高,需手动管理内存和类型安全。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具