搜索
首页后端开发Python教程Python音频处理库pydub如何使用

    1. 安装

    使用pip安装即可(还需安装ffmpeg依赖,建议使用conda命令安装,则不需要配置环境):

    pip install pydub

    2. 导入和读取音频文件

    from pydub import AudioSegment
    audio = AudioSegment.from_file("path/to/file")

    3. 播放音频

    from pydub.playback import play
    play(audio)

    4. 音频时长

    duration = audio.duration_seconds # 单位为秒

    5. 音频切割

    # 前10秒
    audio = audio[:10000]
    
    # 后10秒
    audio = audio[-10000:]
    
    # 从第10秒开始到第20秒结束
    audio = audio[10000:20000]
    
    # 从第10秒开始到结尾
    audio = audio[10000:]
    
    # 从开始到第10秒audio = audio[:10000]

    6. 音频合并

    audio1 = AudioSegment.from_file("path/to/file1")
    audio2 = AudioSegment.from_file("path/to/file2")
    audio_combined = audio1 + audio2

    7. 音频转换

    audio.export("path/to/new/file", format="mp3")

    8. 调整音量

    # 增加10分贝
    louder_audio = audio + 10
    
    # 减小10分贝
    quieter_audio = audio - 10

    9. 等分分割音频

    # 等分分割,按大概每三分钟进行分割
    for i in range(1, 1000):
        if 3.3 >= (audio.duration_seconds / (60 * i)) >= 2.8:
            number = i
            break
    chunks = audio[::int(audio.duration_seconds / number * 1000 + 1)]  # 切割
    
    # 保存分割后的音频
    for i, chunk in enumerate(chunks):
        chunk.export("path/to/new/file{}.wav".format(title,i), format="wav")

    10. 完整代码

    下面是一段完整的代码,用于对音频进行前后切割,并将音频分割成合适长度的小段进行保存。

    from pydub import AudioSegment
    
    # 读取音频文件
    audio = AudioSegment.from_file("path/to/file")
    
    # 输出视频时长
    print('视频时长:', audio.duration_seconds / 60)
    
    # 前后切割
    start = int(input('前切割n秒,不切割输入0'))*1000
    end = int(input('后切割n秒,不切割输入0'))*1000
    if start:
        audio = audio[start:-end]
    
    # 计算合适的分割长度
    for i in range(1, 1000):
        if 3.3 >= (audio.duration_seconds / (60 * i)) >= 2.8:
            number = i
            break
    chunks = audio[::int(audio.duration_seconds / number * 1000 + 1)] 
    # 保存分割后的音频
    for i, chunk in enumerate(chunks):
        print('分割后的时长:', chunk.duration_seconds / 60)
        chunk.export("path/to/new/file{}.wav".format(i), format="wav")

    应用案例

    1. 将音频文件转换为指定格式

    from pydub import AudioSegment
    
    # 读取音频文件
    audio = AudioSegment.from_file("path/to/file")
    
    # 转换为mp3格式并保存
    audio.export("path/to/new/file.mp3", format="mp3")

    2. 将多个音频文件合并为一个文件

    from pydub import AudioSegment
    
    # 读取音频文件
    audio1 = AudioSegment.from_file("path/to/file1")
    audio2 = AudioSegment.from_file("path/to/file2")
    
    # 合并音频文件并保存
    combined_audio = audio1 + audio2
    combined_audio.export("path/to/new/file", format="wav")

    3. 制作铃声

    from pydub import AudioSegment
    
    # 读取音频文件
    audio = AudioSegment.from_file("path/to/file")
    
    # 切割并保存
    start = 10000
    end = 15000
    ringtone = audio[start:end]
    ringtone.export("path/to/new/file", format="mp3")

    4. 调整音频音量

    from pydub import AudioSegment
    
    # 读取音频文件
    audio = AudioSegment.from_file("path/to/file")
    
    # 增加10分贝
    louder_audio = audio + 10
    
    # 减小10分贝
    quieter_audio = audio - 10
    
    # 保存调整后的音频
    louder_audio.export("path/to/new/file", format="wav")
    quieter_audio.export("path/to/new/file", format="wav")

    案例:通过识别空白音,分割音频中的歌曲

    from pydub import AudioSegment
    from pydub.silence import split_on_silence
    
    # 读取音频文件
    audio = AudioSegment.from_file("audio.mp3", format="mp3")
    
    # 设置分割参数
    min_silence_len = 700  # 最小静音长度
    silence_thresh =-10  # 静音阈值,越小越严格
    keep_silence = 600  # 保留静音长度
    
    # 计算分割数量
    num_segments = int(audio.duration_seconds/60/3)  # 每首歌曲大概三分钟,计算歌曲数量
    
    # 分割音频文件
    for i in range(-10, 0):
        segments = split_on_silence(audio, min_silence_len=min_silence_len, silence_thresh=i, keep_silence=keep_silence)
        if len(segments) <= num_segments:
            print(f"分割成功,共分割出 {len(segments)} 段")
            break
        else:
            print(f"当前阈值为 {i},分割出 {len(segments)} 段,继续尝试")

    首先,我们使用AudioSegment.from_file()方法读取音频文件,并设置分割参数min_silence_len、silence_thresh和keep_silence分别表示最小静音长度、静音阈值和保留静音长度。其中,静音阈值越小,分割出的小段越多,但可能会出现误分割的情况;反之,静音阈值越大,分割出的小段越少,但可能会出现漏分割的情况。

    然后,我们计算分割数量num_segments,即将音频文件分割成多少段。这里我们假设每首歌曲大概三分钟,计算出总共需要分割成多少段。

    最后,我们使用split_on_silence()方法对音频文件进行分割,设置分割参数,并通过循环来不断调整静音阈值,直到分割出的小段数量符合预期为止。如果分割成功,则跳出循环;否则,继续尝试。

    总而言之,pydub是一个非常实用的音频处理库,可以方便地进行音频处理、转换、合并等操作。同时,pydub还有丰富的应用场景,如制作铃声、调整音量等。值得注意的是,在使用pydub的过程中,需要注意音频格式的兼容性问题。

    此外,还可以通过pydub对音频进行编解码、混音、重采样等操作。下面是一些常见的操作示例。

    编解码、混音、重采样

    1. 编解码

    from pydub import AudioSegment
    
    # 读取音频文件
    audio = AudioSegment.from_file("path/to/file")
    
    # 编码
    encoded_audio = audio.set_frame_rate(16000).set_sample_width(2).set_channels(1)
    
    # 解码
    decoded_audio = encoded_audio.set_frame_rate(44100).set_sample_width(4).set_channels(2)

    2. 混音

    from pydub import AudioSegment
    
    # 读取音频文件
    audio1 = AudioSegment.from_file("path/to/file1")
    audio2 = AudioSegment.from_file("path/to/file2")
    
    # 混音
    mixed_audio = audio1.overlay(audio2)
    
    # 保存混音后的音频
    mixed_audio.export("path/to/new/file", format="wav")

    3. 重采样

    from pydub import AudioSegment
    
    # 读取音频文件
    audio =AudioSegment.from_file("path/to/file")
    
    # 重采样为44100Hz
    resampled_audio = audio.set_frame_rate(44100)
    
    # 保存重采样后的音频
    resampled_audio.export("path/to/new/file", format="wav")

    通过pydub,我们可以方便地进行音频编解码、混音、重采样等操作,进一步扩展了pydub的应用场景。需要注意的是,在进行音频混音操作时,需要保证两个音频文件的采样率、采样位数和声道数相同。

    最后,总结一下pydub的优点和缺点。

    优点:

    轻量级:pydub是一个轻量级的音频处理库,安装方便,使用简单。

    功能丰富:pydub提供了丰富的音频处理功能,包括切割、合并、转换、调整音量、编解码、混音、重采样等。

    应用广泛:pydub的应用场景非常广泛,包括音频处理、铃声制作、音频格式转换、语音识别等等。

    缺点:

    对格式的兼容性有限:pydub对音频格式的兼容性有限,不支持所有的音频格式,需要先将音频转换为支持的格式后才能进行处理。

    性能一般:pydub在处理大文件时,性能可能会比较一般,需要耗费一定的时间和计算资源。

    不支持流式处理:pydub不支持流式处理,需要将整个音频文件读取到内存中,导致内存占用较大。

    综上所述,pydub是一个功能丰富、应用广泛的音频处理库。在使用pydub时,需要注意音频格式的兼容性问题,并注意处理大文件时的性能和内存占用。如果需要处理更复杂的音频任务,可以考虑使用其他更专业的音频处理库。

    以上是Python音频处理库pydub如何使用的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明
    本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
    详细讲解Python之Seaborn(数据可视化)详细讲解Python之Seaborn(数据可视化)Apr 21, 2022 pm 06:08 PM

    本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

    详细了解Python进程池与进程锁详细了解Python进程池与进程锁May 10, 2022 pm 06:11 PM

    本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

    Python自动化实践之筛选简历Python自动化实践之筛选简历Jun 07, 2022 pm 06:59 PM

    本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

    归纳总结Python标准库归纳总结Python标准库May 03, 2022 am 09:00 AM

    本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于标准库总结的相关问题,下面一起来看一下,希望对大家有帮助。

    分享10款高效的VSCode插件,总有一款能够惊艳到你!!分享10款高效的VSCode插件,总有一款能够惊艳到你!!Mar 09, 2021 am 10:15 AM

    VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

    python中文是什么意思python中文是什么意思Jun 24, 2019 pm 02:22 PM

    pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。

    Python数据类型详解之字符串、数字Python数据类型详解之字符串、数字Apr 27, 2022 pm 07:27 PM

    本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

    详细介绍python的numpy模块详细介绍python的numpy模块May 19, 2022 am 11:43 AM

    本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

    See all articles

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    AI Hentai Generator

    AI Hentai Generator

    免费生成ai无尽的。

    热门文章

    R.E.P.O.能量晶体解释及其做什么(黄色晶体)
    2 周前By尊渡假赌尊渡假赌尊渡假赌
    仓库:如何复兴队友
    4 周前By尊渡假赌尊渡假赌尊渡假赌
    Hello Kitty Island冒险:如何获得巨型种子
    3 周前By尊渡假赌尊渡假赌尊渡假赌

    热工具

    DVWA

    DVWA

    Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

    Atom编辑器mac版下载

    Atom编辑器mac版下载

    最流行的的开源编辑器

    Dreamweaver Mac版

    Dreamweaver Mac版

    视觉化网页开发工具

    PhpStorm Mac 版本

    PhpStorm Mac 版本

    最新(2018.2.1 )专业的PHP集成开发工具

    SecLists

    SecLists

    SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。