搜索
首页Javajava教程Java嵌入数据引擎从SQLite到SPL实例分析

可以在Java应用中嵌入的数据引擎看起来比较丰富,但其实并不容易选择。Redis计算能力很差,只适合简单查询的场景。Spark架构复杂沉重,部署维护很是麻烦。H2\HSQLDB\Derby等内嵌数据库倒是架构简单,但计算能力又不足,连基本的窗口函数都不支持。

相比之下,SQLite在架构性和计算能力上取得了较好的平衡,是应用较广的Java嵌入数据引擎。

SQLite适应常规基本应用场景

SQLite架构简单,其核心虽然是C语言开发的,但封装得比较好,对外呈现为一个小巧的Jar包,能方便地集成在Java应用中。SQLite提供了JDBC接口,可以被Java调用:

Connection connection = DriverManager.getConnection("jdbc:sqlite::memory:");
Statement st = connection.createStatement();
st.execute("restore from d:/ex1");
ResultSet rs = st.executeQuery("SELECT * FROM orders");

SQLite提供了标准的SQL语法,常规的数据处理和计算都没有问题。特别地,SQLite已经能支持窗口函数,可以方便地实现很多组内运算,计算能力比其他内嵌数据库更强。

SELECT x, y, row_number() OVER (ORDER BY y) AS row_number FROM t0 ORDER BY x;
SELECT a, b, group_concat(b, '.') OVER ( ORDER BY a ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS group_concat FROM t1;

SQLite面对复杂场景尚有不足

SQLite的优点亮眼,但对于复杂应用场景时还是有些缺点。

Java应用可能处理的数据源多种多样,比如csv文件、RDB、Excel、Restful,但SQLite只处理了简单情况,即对csv等文本文件提供了直接可用的命令行加载程序:

.import --csv --skip 1 --schema temp /Users/scudata/somedata.csv tab1

对于其他大部分数据源,SQLite都没有提供方便的接口,只能硬写代码加载数据,需要多次调用命令行,整个过程很繁琐,时效性也差。

以加载RDB数据源为例,一般的做法是先用Java执行命令行,把RDB库表转为csv;再用JDBC访问SQLite,创建表结构;之后用Java执行命令行,将csv文件导入SQLite;最后为新表建索引,以提高性能。这个方法比较死板,如果想灵活定义表结构和表名,或通过计算确定加载的数据,代码就更难写了。

类似地,对于其他数据源,SQLite也不能直接加载,同样要通过繁琐地转换过程才可以。

SQL接近自然语言,学习门槛低,容易实现简单的计算,但不擅长复杂的计算,比如复杂的集合计算、有序计算、关联计算、多步骤计算。SQLite采用SQL语句做计算,SQL优点和缺点都会继承下来,勉强实现这些复杂计算的话,代码会显得繁琐难懂。

比如,某只股票最长的上涨天数,SQL要这样写:

select max(continuousDays)-1
from (select count(*) continuousDays
from (select sum(changeSign) over(order by tradeDate) unRiseDays
from (select tradeDate,
case when price>lag(price) over(order by tradeDate) then 0 else 1 end changeSign from AAPL) )
group by unRiseDays)

这也不单是SQLite的难题,事实上,由于集合化不彻底、缺乏序号、缺乏对象引用等原因,其他SQL数据库也不擅长这些运算。

业务逻辑由结构化数据计算和流程控制组成,SQLite支持SQL,具有结构化数据计算能力,但SQLite没有提供存储过程,不具备独立的流程控制能力,也就不能实现一般的业务逻辑,通常要利用Java主程序的判断和循环语句。由于Java没有专业的结构化数据对象来承载SQLite数据表和记录,转换过程麻烦,处理过程不畅,开发效率不高。

前面提过,SQLite内核是C程序,虽然可以被集成到Java应用中,但并不能和Java无缝集成,和Java主程序交换数据时要经过耗时的转换才能完成,在涉及数据量较大或交互频繁时性能就会明显不足。同样因为内核是C程序,SQLite会在一定程度上破坏Java架构的一致性和健壮性。

对于Java应用来讲,原生在JVM上的esProc SPL是更好的选择。

SPL全面支持各种数据源

esProc SPL是JVM下开源的嵌入数据引擎,架构简单,可直接加载数据源,可以通过JDBC接口被Java集成调用,并方便地进行后续计算。

SPL架构简单,无须独立服务,只要引入SPL的Jar包,就可以部署在Java环境中。

直接加载数据源,代码简短,过程简单,时效性强。比如加载Oracle:

A
1 =connect("orcl")
2 =A1.query@x("select OrderID,Client,SellerID,OrderDate,Amount from orders order by OrderID")
3 >env(orders,A2)

对于SQLite擅长加载的csv文件,SPL也可以直接加载,使用内置函数而不是外部命令行,稳定且效率高,代码更简短:

=T("/Users/scudata/somedata.csv")

多种外部数据源。除了RDB和csv,SPL还直接支持txt\xls等文件,MongoDB、Hadoop、redis、ElasticSearch、Kafka、Cassandra等NoSQL,以及WebService XML、Restful Json等多层数据。比如,将HDSF里的文件加载到内存:

A
1 =hdfs_open(;"hdfs://192.168.0.8:9000")
2 =hdfs_file(A1,"/user/Orders.csv":"GBK")
3 =A2.cursor@t()
4 =hdfs_close(A1)
5 >env(orders,A4)

JDBC接口可以方便地集成。加载的数据量一般比较大,通常在应用的初始阶段运行一次,只须将上面的加载过程存为SPL脚本文件,在Java中以存储过程的形式引用脚本文件名:

Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn =DriverManager.getConnection("jdbc:esproc:local://");
CallableStatement statement = conn.prepareCall("{call init()}");
statement.execute();

SPL的计算能力更强大

SPL提供了丰富的计算函数,可以轻松实现日常计算。SPL支持多种高级语法,大量的日期函数和字符串函数,很多用SQL难以表达的计算,用SPL都可以轻松实现,包括复杂的有序计算、集合计算、分步计算、关联计算,以及带流程控制的业务逻辑。

丰富的计算函数。SPL可以轻松实现各类日常计算:

  A B
1 =Orders.find(arg_OrderIDList) //多键值查找
2 =Orders.select(Amount>1000 && like(Client,\"*S*\")) //模糊查询
3 = Orders.sort(Client,-Amount) //排序
4 = Orders.id(Client) //去重
5 =join(Orders:O,SellerId; Employees:E,EId).new(O.OrderID, O.Client,O.Amount,E.Name,E.Gender,E.Dept) //关联

标准SQL语法。SPL也提供了SQL-92标准的语法,比如分组汇总:

$select year(OrderDate) y,month(OrderDate) m, sum(Amount) s,count(1) c
from {Orders}
Where Amount>=? and Amount<? ;arg1,arg2

函数选项、层次参数等方便的语法。功能相似的函数可以共用一个函数名,只用函数选项区分差别,比SQL更加灵活方便。比如select函数的基本功能是过滤,如果只过滤出符合条件的第1条记录,可使用选项@1:

T.select@1(Amount>1000)

二分法排序,即对有序数据用二分法进行快速过滤,使用@b:

T.select@b(Amount>1000)

有序分组,即对分组字段有序的数据,将相邻且字段值相同的记录分为一组,使用@b:

T.groups@b(Client;sum(Amount))

函数选项还可以组合搭配,比如:

Orders.select@1b(Amount>1000)

结构化运算函数的参数有些很复杂,比如SQL就需要用各种关键字把一条语句的参数分隔成多个组,但这会动用很多关键字,也使语句结构不统一。SPL使用层次参数简化了复杂参数的表达,即通过分号、逗号、冒号自高而低将参数分为三层:

join(Orders:o,SellerId ; Employees:e,EId)

更丰富的日期和字符串函数。除了常见函数,比如日期增减、截取字符串,SPL还提供了更丰富的日期和字符串函数,在数量和功能上远远超过了SQL,同样运算时代码更短。比如:

季度增减:elapse@q(“2020-02-27”,-3) //返回2019-05-27

N个工作日之后的日期:workday(date(“2022-01-01”),25) //返回2022-02-04

字符串类函数,判断是否全为数字:isdigit(“12345”) //返回true

取子串前面的字符串:substr@l(“abCDcdef”,“cd”) //返回abCD

按竖线拆成字符串数组:“aa|bb|cc”.split(“|”) //返回[“aa”,“bb”,“cc”]

SPL还支持年份增减、求季度、按正则表达式拆分字符串、拆出SQL的where或select部分、拆出单词、按标记拆HTML等大量函数。

简化有序运算。涉及跨行的有序运算,通常都有一定的难度,比如比上期和同期比。SPL使用"字段[相对位置]"引用跨行的数据,可显著简化代码,还可以自动处理数组越界等特殊情况,比SQL窗口函数更加方便。比如,追加一个计算列rate,计算每条订单的金额增长率:

=T.derive(AMOUNT/AMOUNT[-1]-1: rate)

综合运用位置表达式和有序函数,很多SQL难以实现的有序运算,都可以用SPL轻松解决。比如,根据考勤表,找出连续 4 周每天均出勤达 7 小时的学生:

  A
1 =Student.select(DURATION>=7).derive(pdate@w(ATTDATE):w)
2 =A1.group@o(SID;~.groups@o(W;count(~):CNT).select(CNT==7).group@i(W-W[-1]!=7).max(~.len()):weeks)
3 =A2.select(weeks>=4).(SID)

简化集合运算,SPL的集合化更加彻底,配合灵活的语法和强大的集合函数,可大幅简化复杂的集合计算。比如,在各部门找出比本部门平均年龄小的员工:

A
1 =Employees.group(DEPT; (a=~.avg(age(BIRTHDAY)),~.select(age(BIRTHDAY)9d0338bd0dbd0c4c345215ce81a38000price[-1],a+1,0))

简化关联计算。SPL支持对象引用的形式表达关联,可以通过点号直观地访问关联表,避免使用JOIN导致的混乱繁琐,尤其适合复杂的多层关联和自关联。比如,根据员工表计算女经理的男员工:

=employees.select(gender:"male",dept.manager.gender:"female")

方便的分步计算,SPL集合化更加彻底,可以用变量方便地表达集合,适合多步骤计算,SQL要用嵌套表达的运算,用SPL可以更轻松实现。比如,找出销售额累计占到一半的前n个大客户,并按销售额从大到小排序:

A B
2 =sales.sort(amount:-1) /销售额逆序排序,可在SQL中完成
3 =A2.cumulate(amount) /计算累计序列
4 =A3.m(-1)/2 /最后的累计即总额
5 =A3.pselect(~>=A4) /超过一半的位置
6 =A2(to(A5)) /按位置取值

流程控制语法。SPL提供了流程控制语句,配合内置的结构化数据对象,可以方便地实现各类业务逻辑。

分支判断语句:

  A B
2  
3 if T.AMOUNT>10000 =T.BONUS=T.AMOUNT*0.05
4 else if T.AMOUNT>=5000 && T.AMOUNT202ad72c7bddd7ccc5032ae98c1b2fbe=2000 && T.AMOUNT<5000 =T.BONUS=T.AMOUNT*0.02

循环语句:

  A B
1 =db=connect("db")  
2 =T=db.query@x("select * from sales where SellerID=? order by OrderDate",9)
3 for T =A3.BONUS=A3.BONUS+A3.AMOUNT*0.01
4   =A3.CLIENT=CONCAT(LEFT(A3.CLIENT,4), " co.,ltd.")
5    …

与Java的循环类似,SPL还可用break关键字跳出(中断)当前循环体,或用next关键字跳过(忽略)本轮循环,不展开说了。

计算性能更好。在内存计算方面,除了常规的主键和索引外,SPL还提供了很多高性能的数据结构和算法支持,比大多数使用SQL的内存数据库性能好得多,且占用内存更少,比如预关联技术、并行计算、指针式复用。

优化体系结构

SPL支持JDBC接口,代码可外置于Java,耦合性更低,也可内置于Java,调用更简单。SPL支持解释执行和热切换,代码方便移植和管理运营,支持内外存混合计算。

外置代码耦合性低。SPL代码可外置于Java,通过文件名被调用,既不依赖数据库,也不依赖Java,业务逻辑和前端代码天然解耦。

对于较短的计算,也可以像SQLite那样合并成一句,写在Java代码中:

Class.forName("com.esproc.jdbc.InternalDriver");
Connection conn =DriverManager.getConnection("jdbc:esproc:local://");
Statement statement = conn.createStatement();
String arg1="1000";
String arg2="2000"
ResultSet result = statement.executeQuery(=Orders.select(Amount>="+arg1+" && Amount<"+arg2+"). groups(year(OrderDate):y,month(OrderDate):m; sum(Amount):s,count(1):c)");

解释执行和热切换。业务逻辑数量多,复杂度高,变化是常态。良好的系统构架,应该有能力应对变化的业务逻辑。SPL是基于Java的解释型语言,无须编译就能执行,脚本修改后立即生效,支持不停机的热切换,适合应对变化的业务逻辑。

方便代码移植。SPL通过数据源名从数据库取数,如果需要移植,只要改动配置文件中的数据源配置信息,而不必修改SPL代码。SPL支持动态数据源,可通过参数或宏切换不同的数据库,从而进行更方便的移植。为了进一步增强可移植性,SPL还提供了与具体数据库无关的标准SQL语法,使用sqltranslate函数可将标准SQL转为主流方言SQL,仍然通过query函数执行。

方便管理运营。由于支持库外计算,代码可被第三方工具管理,方便团队协作;SPL脚本可以按文件目录进行存放,方便灵活,管理成本低;SPL对数据库的权限要求类似Java,不影响数据安全。

内外存混合计算。有些数据太大,无法放入内存,但又要与内存表共同计算,这种情况可利用SPL实现内外存混合计算。比如,主表orders已加载到内存,大明细表orderdetail是文本文件,下面进行主表和明细表的关联计算:

  A
1 =file("orderdetail.txt").cursor@t()
2 =orders.cursor()
3 =join(A1:detail,orderid ; A2:main,orderid)
4 =A3.groups(year(main.orderdate):y; sum(detail.amount):s)

SQLite使用简单方便,但数据源加载繁琐,计算能力不足。SPL架构也非常简单,并直接支持更多数据源。SPL计算能力强大,提供了丰富的计算函数,可以轻松实现SQL不擅长的复杂计算。SPL还提供多种优化体系结构的手段,代码既可外置也可内置于Java,支持解释执行和热切换,方便移植和管理运营,并支持内外存混合计算。

以上是Java嵌入数据引擎从SQLite到SPL实例分析的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
带你搞懂Java结构化数据处理开源库SPL带你搞懂Java结构化数据处理开源库SPLMay 24, 2022 pm 01:34 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于结构化数据处理开源库SPL的相关问题,下面就一起来看一下java下理想的结构化数据处理类库,希望对大家有帮助。

Java集合框架之PriorityQueue优先级队列Java集合框架之PriorityQueue优先级队列Jun 09, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于PriorityQueue优先级队列的相关知识,Java集合框架中提供了PriorityQueue和PriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的,PriorityBlockingQueue是线程安全的,下面一起来看一下,希望对大家有帮助。

完全掌握Java锁(图文解析)完全掌握Java锁(图文解析)Jun 14, 2022 am 11:47 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于java锁的相关问题,包括了独占锁、悲观锁、乐观锁、共享锁等等内容,下面一起来看一下,希望对大家有帮助。

一起聊聊Java多线程之线程安全问题一起聊聊Java多线程之线程安全问题Apr 21, 2022 pm 06:17 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于多线程的相关问题,包括了线程安装、线程加锁与线程不安全的原因、线程安全的标准类等等内容,希望对大家有帮助。

详细解析Java的this和super关键字详细解析Java的this和super关键字Apr 30, 2022 am 09:00 AM

本篇文章给大家带来了关于Java的相关知识,其中主要介绍了关于关键字中this和super的相关问题,以及他们的一些区别,下面一起来看一下,希望对大家有帮助。

Java基础归纳之枚举Java基础归纳之枚举May 26, 2022 am 11:50 AM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于枚举的相关问题,包括了枚举的基本操作、集合类对枚举的支持等等内容,下面一起来看一下,希望对大家有帮助。

java中封装是什么java中封装是什么May 16, 2019 pm 06:08 PM

封装是一种信息隐藏技术,是指一种将抽象性函式接口的实现细节部分包装、隐藏起来的方法;封装可以被认为是一个保护屏障,防止指定类的代码和数据被外部类定义的代码随机访问。封装可以通过关键字private,protected和public实现。

归纳整理JAVA装饰器模式(实例详解)归纳整理JAVA装饰器模式(实例详解)May 05, 2022 pm 06:48 PM

本篇文章给大家带来了关于java的相关知识,其中主要介绍了关于设计模式的相关问题,主要将装饰器模式的相关内容,指在不改变现有对象结构的情况下,动态地给该对象增加一些职责的模式,希望对大家有帮助。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
1 个月前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。