搜索
首页后端开发Python教程Python中的变量类型标注怎么用

一、概述

1、描述

变量类型注解是用来对变量和函数的参数返回值类型做注解,让调用方减少类型方面的错误,也可以提高代码的可读性和易用性。

但是,变量类型注解语法传入的类型表述能力有限,不能说明复杂的类型组成情况,因此引用了typing模块,来实现复杂的类型表达。

2、常用的数据类型

Type Description
int 整型 integer
float 浮点数字
bool 布尔(int 的子类)
str 字符 (unicode)
bytes 8 位字符
object 任意对象(公共基类)
List[str] 字符组成的列表
Tuple[int, int] 两个int对象的元组
Tuple[int, ...] 任意数量的 int 对象的元组
Dict[str, int] 键是 str 值是 int 的字典
Iterable[int] 包含 int 的可迭代对象
Sequence[bool] 布尔值序列(只读)
Mapping[str, int] 从 str 键到 int 值的映射(只读)
Any 具有任意类型的动态类型值
Union 联合类型
Optional 参数可以为空或已经声明的类型
Mapping 映射,是 collections.abc.Mapping 的泛型
MutableMapping Mapping 对象的子类,可变
Generator 生成器类型, Generator[YieldType、SendType、ReturnType]
NoReturn 函数没有返回结果
Set 集合 set 的泛型, 推荐用于注解返回类型
AbstractSet collections.abc.Set 的泛型,推荐用于注解参数
Sequence collections.abc.Sequence 的泛型,list、tuple 等的泛化类型
TypeVar 自定义兼容特定类型的变量
Generic 自定义泛型类型
NewType 声明一些具有特殊含义的类型
Callable 可调用类型, Callable[[参数类型], 返回类型]
NoReturn 没法返回值

3、mypy模块

mypy是Python的可选静态类型检查器

安装mypy模块 pip3 install mypy

使用mypy进行静态类型检查 mypy 执行 python 文件

二、使用

1、基本使用

from typing import List, Set, Dict, Tuple
#对于简单的 Python 内置类型,只需使用类型的名称
x1: int = 1
x2: float = 1.0
x3: bool = True
x4: str = "test"
x5: bytes = b"test"
 
# 对于 collections ,类型名称用大写字母表示,并且
# collections 内类型的名称在方括号中
x6: List[int] = [1]
x7: Set[int] = {6, 7}
#对于映射,需要键和值的类型
x8: Dict[str, float] = {'field': 2.0}
#对于固定大小的元祖,指定所有元素的类型
x9: Tuple[int, str, float] = (3, "yes", 7.5)
#对于可变大小的元祖,使用一种类型和省略号
x10: Tuple[int, ...] = (1, 2, 3)
 
'''在终端执行检查
(venv) D:\python>mypy .\01.py
Success: no issues found in 1 source file
'''

2、函数参数返回值添加类型标注

1. 指定多个参数的方式

'''
定义一个函数   参数 num int类型
返回值 字符串类型
使用mypy检测
'''
def num_fun(num: int) -> str:
    return str(num)
 
num_fun(100)
print(num_fun(100))
 
# 指定多个参数的方式
def plus(num1: int, num2: int) -> int:
    return num1 + num2
 
# 在类型注释后为参数添加默认值,默认值需要添加在末尾
'''
声明函数参数时,所有带有默认值的参数必须放在非默认参数的后面。
这是因为 Python 解释器需要确定参数传递的顺序,
如果默认参数放在非默认参数前面,解释器就无法确定哪个参数是哪个
'''
def func1(num1: int, my_float: float = 3.5)-> float:
    return num1 + my_float
print(func1(10,20))
f = func1
print(f(10))

2. Callable

Callable 是一个抽象类,用于描述可调用对象的基本行为,例如函数、方法和类。当你声明一个函数变量并将其分配给一个变量时,这个变量只是一个普通的 Python 对象,并不是一个可调用对象,因此它没有默认值

带有默认值的参数可以放在任何位置,但是在声明函数参数时,所有带有默认值的参数必须放在非默认参数的后面。这是因为 Python 解释器需要确定参数传递的顺序,如果默认参数放在非默认参数前面,解释器就无法确定哪个参数是哪个。

from typing import  Callable
#定义变量  指向一个函数
def func2(num1:int, my_float=3.5) -> str:
    return f'返回结果{num1 + my_float}'
print(func2(10))
#Callable指向可调用(函数)值的方式
x: Callable[[int, float], str] = func2
print(x(10, 3.5))
 
'''
执行结果
返回结果13.5
返回结果13.5
'''

3. Iterator

#定义函数,产生整数的生成器,每次返回一个
from typing import Iterator
# 产生整数的生成器函数安全地返回只是一个 整数迭代器的函数
#,因此这就是我们对其进行注释的方式
def g(n: int) -> Iterator[int]:
    i = 0
    while i < n:
        yield i #下次迭代时,代码从 yield 的下一条语句(不是下一行)开始执行
        i += 1
 
print(g(10))
for i in g(10):
    print(i)
 
&#39;&#39;&#39;执行结果
<generator object g at 0x00000000014E88E0>
0
1
2
3
4
5
6
7
8
9
&#39;&#39;&#39;

3、混合类型检查改进

1.联合运算符

联合运算符使用 " | "  线来替代了旧版本中Union[] 方法,使得程序更简洁

#新版本
def get_name(user: str | dict) -> str:
    if isinstance(user, str):
        return user
    elif isinstance(user, dict):
        return user.get(&#39;name&#39;, &#39;&#39;)
print(get_name({&#39;name&#39;:&#39;Bob&#39;}))
print(get_name("Alice"))

在这个例子中,函数get_name接受一个参数user,它可以是一个字符串或一个字典。如果user是一个字符串,函数会直接返回这个字符串;如果user是一个字典,函数会尝试从字典中获取name字段的值,并返回它。

在这个例子中,我们使用联合运算符将str和dict类型组合起来,表示user可以是这两种类型之一。

#旧版本,Union方法来实现相同的功能
from typing import Union
def get_name2(user: Union[str, dict]) -> str:
    if isinstance(user, str):
        return user
    elif isinstance(user, dict):
        return user.get(&#39;name&#39;, &#39;&#39;)
 
print(get_name2({&#39;name&#39;:&#39;Bob&#39;}))
print(get_name2("Alice"))
&#39;&#39;&#39;执行结果
Bob
Alice
&#39;&#39;&#39;

4、类型别名更改

#旧版本
oldname = str
def oldFunc(param:oldname) -> oldname:
    return param + param
oldFunc(&#39;oldFunc:花非人陌&#39;)
 
 
#新版本,从3.10后开始支持
from typing import TypeAlias
 
newstr :TypeAlias = str    #定义类型别名
newint :TypeAlias = int
def func_test(num:newint, msg:newstr)->newstr:
    return str(num) + msg
print(func_test(100,"类型名称更改"))

以上是Python中的变量类型标注怎么用的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
Python的科学计算中如何使用阵列?Python的科学计算中如何使用阵列?Apr 25, 2025 am 12:28 AM

Arraysinpython,尤其是Vianumpy,ArecrucialInsCientificComputingfortheireftheireffertheireffertheirefferthe.1)Heasuedfornumerericalicerationalation,dataAnalysis和Machinelearning.2)Numpy'Simpy'Simpy'simplementIncressionSressirestrionsfasteroperoperoperationspasterationspasterationspasterationspasterationspasterationsthanpythonlists.3)inthanypythonlists.3)andAreseNableAblequick

您如何处理同一系统上的不同Python版本?您如何处理同一系统上的不同Python版本?Apr 25, 2025 am 12:24 AM

你可以通过使用pyenv、venv和Anaconda来管理不同的Python版本。1)使用pyenv管理多个Python版本:安装pyenv,设置全局和本地版本。2)使用venv创建虚拟环境以隔离项目依赖。3)使用Anaconda管理数据科学项目中的Python版本。4)保留系统Python用于系统级任务。通过这些工具和策略,你可以有效地管理不同版本的Python,确保项目顺利运行。

与标准Python阵列相比,使用Numpy数组的一些优点是什么?与标准Python阵列相比,使用Numpy数组的一些优点是什么?Apr 25, 2025 am 12:21 AM

numpyarrayshaveseveraladagesoverandastardandpythonarrays:1)基于基于duetoc的iMplation,2)2)他们的aremoremoremorymorymoremorymoremorymoremorymoremoremory,尤其是WithlargedAtasets和3)效率化,效率化,矢量化函数函数函数函数构成和稳定性构成和稳定性的操作,制造

阵列的同质性质如何影响性能?阵列的同质性质如何影响性能?Apr 25, 2025 am 12:13 AM

数组的同质性对性能的影响是双重的:1)同质性允许编译器优化内存访问,提高性能;2)但限制了类型多样性,可能导致效率低下。总之,选择合适的数据结构至关重要。

编写可执行python脚本的最佳实践是什么?编写可执行python脚本的最佳实践是什么?Apr 25, 2025 am 12:11 AM

到CraftCraftExecutablePythcripts,lollow TheSebestPractices:1)Addashebangline(#!/usr/usr/bin/envpython3)tomakethescriptexecutable.2)setpermissionswithchmodwithchmod xyour_script.3)

Numpy数组与使用数组模块创建的数组有何不同?Numpy数组与使用数组模块创建的数组有何不同?Apr 24, 2025 pm 03:53 PM

numpyArraysareAreBetterFornumericalialoperations andmulti-demensionaldata,而learthearrayModuleSutableforbasic,内存效率段

Numpy数组的使用与使用Python中的数组模块阵列相比如何?Numpy数组的使用与使用Python中的数组模块阵列相比如何?Apr 24, 2025 pm 03:49 PM

numpyArraySareAreBetterForHeAvyNumericalComputing,而lelethearRayModulesiutable-usemoblemory-connerage-inderabledsswithSimpleDatateTypes.1)NumpyArsofferVerverVerverVerverVersAtility andPerformanceForlargedForlargedAtatasetSetsAtsAndAtasEndCompleXoper.2)

CTYPES模块与Python中的数组有何关系?CTYPES模块与Python中的数组有何关系?Apr 24, 2025 pm 03:45 PM

ctypesallowscreatingingangandmanipulatingc-stylarraysinpython.1)usectypestoInterfacewithClibrariesForperfermance.2)createc-stylec-stylec-stylarraysfornumericalcomputations.3)passarraystocfunctions foreforfunctionsforeffortions.however.however,However,HoweverofiousofmemoryManageManiverage,Pressiveo,Pressivero

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 英文版

SublimeText3 英文版

推荐:为Win版本,支持代码提示!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器