搜索
首页科技周边人工智能程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

码农真的危了!

最近有消息称,OpenAI已经在悄悄地训练ChatGPT,让它学习人类的思考过程,从而真正掌握软件工程,彻底代替「初级码农」。

OpenAI招外包大军,教AI学人类思考

会编程的AI,几家硅谷大厂都在做。

DeepMind的AlphaCode,据说「吊打72%人类程序员」,但尚未开放;传闻中谷歌的「神秘项目」Pitchfork,也还在酝酿中;而微软的GitHub Copilot主要是一个代码补全工具。

要说完全代替人类码农,它们还不够格。

但如果真的让ChatGPT学会了用人类思维去编程,这些友商/自家的产品恐怕要被吊打。

而从种种迹象看来,OpenAI似乎正在下一盘大棋。

根据Semafor的报道,在过去的六个月里,OpenAI已经从拉美和东欧等地区招募了大约1000名外包人员,来训练他们的AI码代码。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

这个新闻中,有两个「华点」。

首先,为什么地点选在拉美和东欧?这个咱们都明白,现在硅谷的泡沫戳破了,各家互联网大厂都在绞尽脑汁「降本增效」,有的靠裁员,有的就去其他国家找廉价劳动力。

第二个「华点」是,这些外包人员中,很多人并不是计算机专业的毕业生,也不具备高级的编程技能。他们的作用是,编写OpenAI期待实现的「自动化」基本代码。

具体来说,其中的60%从事「数据标注」工作——创建大量的图像、音频片段等信息,用来训练人工智能工具或自动驾驶汽车。

另外的40%则是实打实的程序员,他们正在为OpenAI的模型「手搓」数据,从而让AI学习软件工程任务。

此前,OpenAI一直是用从GitHub上抓取的代码训练其模型。

而这次,OpenAI想建立的数据集中,不仅有代码,还包括背后用自然语言编写的人类解释。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

论文地址:https://arxiv.org/abs/2107.03374

对此,Semafor特地采访了一位南美的开发者,而他曾无偿为OpenAI完成了5小时的编码测试。

在这个测试中,他被要求处理两个任务。

首先,他会得到一个编程问题,OpenAI要求他用书面的英语解释自己将如何处理这个问题。

然后,他需要提供一个解决方案。

如果他发现了一个bug,OpenAI就会要求他详细说明问题是什么,应该如何纠正,而不是简单地修复。

「他们很可能是想用一种非常特殊的训练数据来投喂这个模型,在这种情况下,就需要展示人类是如何一步步思考的。」这位开发者说。

此前的ChatGPT,写的代码就被揪出过不少问题。

原因在于,ChatGPT没有任何标记了对错的内部记录,它其实是一个统计模型。ChatGPT的答案,本质上就是从构成GPT-3的互联网数据语料库中收集的概率结果。

当时OpenAI也说,ChatGPT最合适的定位,应该是编码辅助工具。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

但想象一下,如果OpenAI真的教会了ChatGPT「像人类一样一步一步思考」,那它完全可以代替一些需要死记硬背的写代码工作,后果就是,一些「初级」码农被彻底淘汰。

现在,硅谷的高管们正在设想这样的产品,让几乎没有编程经验的人士向AI描述自己的创意和愿景,然后就能构建出任何自己想要的东西,无论是一个网站,还是一个游戏。

几天前,特斯拉的前人工智能主管Andrej Karpathy刚刚在推特上说:「最热门的新编程语言是英语」。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

用ChatGPT来debug,效果拔群

这可能并不是一个玩笑,比如当红炸子鸡ChatGPT,就很有潜力。

最近,一项来自美因茨大学和伦敦大学学院的研究发现,ChatGPT不仅可以出色地修复bug,而且开发者还能通过对话来显著提高成功率。

研究人员表示,ChatGPT的debug性能与常见的深度学习方法CoCoNut和Codex相差无几,并且明显优于标准的自动程序修复方法(APR)。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

论文地址:https://arxiv.org/abs/2301.08653

用ChatGPT来解决代码问题并不新鲜,但与人类对话的独特能力,使它比其他方法和模型更具优势。

为了评估ChatGPT的debug性能,研究人员使用QuixBugs基准的40个纯Python问题对其进行了测试,然后手动检查建议的解决方案是否正确。

由于ChatGPT给出的答案存在一定的随机性,因此研究人员针对每个问题都会单独测试4次。

与其他自动程序修复的基准不同,QuixBugs包含了相对较小的问题(代码行数少),而这非常适合在对话系统中使用。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

在测试过程中,研究人员删除了所有的注释,并询问ChatGPT这段代码是否有bug以及如何修复它。

比如,图1中就是一个关于BITCOUNT问题的例子。其中,第1-2行是向ChatGPT提出的需求;从第4行开始是错误的代码片段。

对于这个例子,我们希望ChatGPT的回答能解决第7行的错误,即nˆ= n - 1应该被替换为n &= n - 1。做为回应,ChatGPT要么给出一段修复完的代码,要么给出一个描述告诉我们应该如何修改。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

结果显示,ChatGPT解决了40个bug中的19个,与CoCoNut(19)和Codex(21)相当,但标准的APR方法只解决了其中的7个问题。

当然,因为ChatGPT和Codex都是来自于同一个语言模型系列,所以解决问题的数量差不多也就不足为奇了。

此外,如果我们仔细观察结果还可以发现,ChatGPT并不是每次都能解决基准测试中的bug。仅在BUCKETSORT和FLATTEN这两个问题上,四次都发现了bug,而其他的通常只能成功1-2次。

也就是说,用户在实际使用时,可能需要尝试数次才能获得正确的结果。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

不过,ChatGPT有一个强大的优势:我们可以在对话中与系统互动,更详细地对问题进行说明,从而获得正确的答案。

实际测试结果,也确实如此。

经过与模型更进一步的对话,研究人员成功地将ChatGPT的正确率刷新到了77.5%,也就是修复了40个错误中的31个,远超SOTA。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

至少,目前看来,这件事是完全有可能的:开发人员将不再需要编写样板代码。

相反,他们可以专注于复杂的应用程序架构或网络安全等领域。

也就是说,虽然ChatGPT可能会完成某些编程工作,例如编写通用函数或样板代码,但它不会完全取代程序员。因为程序员的工作需要的不仅仅是写代码。

成为一名程序员需要技巧——能够构建程序、遵循逻辑并生成比各部分总和更宏大的东西。

码农:我自己「杀」自己

显然,ChatGPT不是码农们做出的第一个「自我迭代」的产品。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

咱们来排一排,那些会写代码的AI。

谷歌的Pitchfork

去年11月,坊间传闻,谷歌正在酝酿一个秘密项目,这个产品会通过机器学习训练代码,自己编自己,自己修复bug,还能自己更新。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

据知情人士透露,这个项目起初是由Alphabet的登月部门——X部门开发的,代号为Pitchfork,去年夏天被转移到了谷歌实验室。

根据内部资料,Pitchfork的作用是「教代码自行编写、自行重写」。

它能够学习不同的编程风格,并且根据这些风格写出代码。

一名谷歌员工表示,开发Pitchfork的初衷是希望建立一个工具,将谷歌的Python代码库更新到新版本。

AlphaCode:吊打72%程序员

2022年2月,DeepMind推出了「AlphaCode」系统,可以使用人工智能生成代码。

根据DeepMind的说法,AlphaCode可以与人类匹敌。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

DeepMind使用编程竞赛平台Codeforces上托管的10个现有竞赛来测试AlphaCode,它的总体排名位于前 54.3%,也就是说,它击败了46%的参赛者 。

DeepMind声称,在使用编程竞赛平台Codeforces进行检测时,AlphaCode解决了100万个样本中34.2%的问题。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

另外在过去6个月参加过比赛的用户中,AlphaCode的数据排到了前28%,可以说「吊打72%人类程序员」!

当时,DeepMind就指出,虽然AlphaCode目前只适用于具有竞争性编程领域,但显然,它未来的能力绝不会止步于此。

它为创造某些工具打开了大门,而这些工具将使编程变得更容易被人们接受,并且有朝一日可以完全实现自动化。

Copilot:代码补全神器

再往前,在2021年,GitHub与OpenAI共同推出了一款AI编程神器——GitHub Copilot。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

输入代码时,Copilot会自动提示程序中接下来可能出现的代码片段,就像一个经过训练用Python或JavaScript说话的自动补全机器人。

Copilot能够填充必要的代码块,只要它们不是特别复杂或者特别有创造性,这对于相当于手工劳动的编程,可太有用了。

2022年6月22日,Copilot正式面向C端上线,定价10美元/月或100美元/年,并向学生用户和流行开源项目的维护者免费提供。

现在,成千上万的开发者都在用Copilot。在十几种最流行的语言编写代码中——有高达40%是依靠它来生成的。

程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农

GitHub预测,开发人员将在五年内使用Copilot编写多达80%的代码。

微软首席技术官Kevin Scott还表示:「我们确信:GitHub Copilot可以应用到数千种不同类型的工作中。」

不过,因为涉嫌侵权,在发布不到5个月后,Copilot已经被愤怒的程序员一举告上法庭,索赔90亿美元。

而学会「软件工程思维」的ChatGPT,能吊打它们吗?按OpenAI的速度,恐怕我们不用等太久。

参考资料:

https://www.semafor.com/article/01/27/2023/openai-has-hired-an-army-of-contractors-to-make-basic-coding-obsolete

https://www.zdnet.com/article/chatgpt-can-write-code-now-researchers-say-its-good-at-fixing-bugs-too/

以上是程序员危!传OpenAI全球招外包大军,手把手训练ChatGPT取代码农的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
微软工作趋势指数2025显示工作场所容量应变微软工作趋势指数2025显示工作场所容量应变Apr 24, 2025 am 11:19 AM

由于AI的快速整合而加剧了工作场所的迅速危机危机,要求战略转变以外的增量调整。 WTI的调查结果强调了这一点:68%的员工在工作量上挣扎,导致BUR

AI可以理解吗?中国房间的论点说不,但是对吗?AI可以理解吗?中国房间的论点说不,但是对吗?Apr 24, 2025 am 11:18 AM

约翰·塞尔(John Searle)的中国房间论点:对AI理解的挑战 Searle的思想实验直接质疑人工智能是否可以真正理解语言或具有真正意识。 想象一个人,对下巴一无所知

中国的'智能” AI助手回应微软召回的隐私缺陷中国的'智能” AI助手回应微软召回的隐私缺陷Apr 24, 2025 am 11:17 AM

与西方同行相比,中国的科技巨头在AI开发方面的课程不同。 他们不专注于技术基准和API集成,而是优先考虑“屏幕感知” AI助手 - AI T

Docker将熟悉的容器工作流程带到AI型号和MCP工具Docker将熟悉的容器工作流程带到AI型号和MCP工具Apr 24, 2025 am 11:16 AM

MCP:赋能AI系统访问外部工具 模型上下文协议(MCP)让AI应用能够通过标准化接口与外部工具和数据源交互。由Anthropic开发并得到主要AI提供商的支持,MCP允许语言模型和智能体发现可用工具并使用合适的参数调用它们。然而,实施MCP服务器存在一些挑战,包括环境冲突、安全漏洞以及跨平台行为不一致。 Forbes文章《Anthropic的模型上下文协议是AI智能体发展的一大步》作者:Janakiram MSVDocker通过容器化解决了这些问题。基于Docker Hub基础设施构建的Doc

使用6种AI街头智能策略来建立一家十亿美元的创业使用6种AI街头智能策略来建立一家十亿美元的创业Apr 24, 2025 am 11:15 AM

有远见的企业家采用的六种策略,他们利用尖端技术和精明的商业敏锐度来创造高利润的可扩展公司,同时保持控制权。本指南是针对有抱负的企业家的,旨在建立一个

Google照片更新解锁了您所有图片的惊人Ultra HDRGoogle照片更新解锁了您所有图片的惊人Ultra HDRApr 24, 2025 am 11:14 AM

Google Photos的新型Ultra HDR工具:改变图像增强的游戏规则 Google Photos推出了一个功能强大的Ultra HDR转换工具,将标准照片转换为充满活力的高动态范围图像。这种增强功能受益于摄影师

Descope建立AI代理集成的身份验证框架Descope建立AI代理集成的身份验证框架Apr 24, 2025 am 11:13 AM

技术架构解决了新兴的身份验证挑战 代理身份集线器解决了许多组织仅在开始AI代理实施后发现的问题,即传统身份验证方法不是为机器设计的

Google Cloud Next 2025以及现代工作的未来Google Cloud Next 2025以及现代工作的未来Apr 24, 2025 am 11:12 AM

(注意:Google是我公司的咨询客户,Moor Insights&Strateging。) AI:从实验到企业基金会 Google Cloud Next 2025展示了AI从实验功能到企业技术的核心组成部分的演变,

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),