搜索
首页Javajava教程Java二叉搜索树的增、插、删和创建示例详解

    ①概念

    二叉搜索树又称二叉排序树,它或者是一棵空树**,或者是具有以下性质的二叉树:

    若它的左子树不为空,则左子树上所有节点的值都小于根节点的值

    若它的右子树不为空,则右子树上所有节点的值都大于根节点的值

    它的左右子树也分别为二叉搜索树

    Java二叉搜索树增、插、删、创的示例分析

    ②操作-查找

    二叉搜索树的查找类似于二分法查找

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    public Node search(int key) {
            Node cur = root;
            while (cur != null) {
                if(cur.val == key) {
                    return cur;
                }else if(cur.val < key) {
                    cur = cur.right;
                }else {
                    cur = cur.left;
                }
            }
            return null;
        }

    ③操作-插入

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

      public boolean insert(int key) {
            Node node = new Node(key);
            if(root == null) {
                root = node;
                return true;
            }
     
            Node cur = root;
            Node parent = null;
     
            while(cur != null) {
                if(cur.val == key) {
                    return false;
                }else if(cur.val < key) {
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
            //parent
            if(parent.val > key) {
                parent.left = node;
            }else {
                parent.right = node;
            }
     
            return true;
        }

    ④操作-删除

    删除操作较为复杂,但理解了其原理还是比较容易

    设待删除结点为 cur, 待删除结点的双亲结点为 parent

    1. cur.left == null

    1. cur 是 root,则 root = cur.right

    2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.right

    3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.right

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    2. cur.right == null

    1. cur 是 root,则 root = cur.left

    2. cur 不是 root,cur 是 parent.left,则 parent.left = cur.left

    3. cur 不是 root,cur 是 parent.right,则 parent.right = cur.left

    第二种情况和第一种情况相同,只是方向相反,这里不再画图

    3. cur.left != null && cur.right != null

    需要使用替换法进行删除,即在它的右子树中寻找中序下的第一个结点(关键码最小),用它的值填补到被删除节点中,再来处理该结点的删除问题

    当我们在左右子树都不为空的情况下进行删除,删除该节点会破坏树的结构,因此用替罪羊的方法来解决,实际删除的过程还是上面的两种情况,这里还是用到了搜索二叉树的性质

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    Java二叉搜索树增、插、删、创的示例分析

    public void remove(Node parent,Node cur) {
            if(cur.left == null) {
                if(cur == root) {
                    root = cur.right;
                }else if(cur == parent.left) {
                    parent.left = cur.right;
                }else {
                    parent.right = cur.right;
                }
            }else if(cur.right == null) {
                if(cur == root) {
                    root = cur.left;
                }else if(cur == parent.left) {
                    parent.left = cur.left;
                }else {
                    parent.right = cur.left;
                }
            }else {
                Node targetParent =  cur;
                Node target = cur.right;
                while (target.left != null) {
                    targetParent = target;
                    target = target.left;
                }
                cur.val = target.val;
                if(target == targetParent.left) {
                    targetParent.left = target.right;
                }else {
                    targetParent.right = target.right;
                }
            }
        }
     
      public void removeKey(int key) {
            if(root == null) {
                return;
            }
            Node cur = root;
            Node parent = null;
            while (cur != null) {
                if(cur.val == key) {
                    remove(parent,cur);
                    return;
                }else if(cur.val < key){
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
        }

    ⑤性能分析

    插入和删除操作都必须先查找,查找效率代表了二叉搜索树中各个操作的性能。

    对有n个结点的二叉搜索树,若每个元素查找的概率相等,则二叉搜索树平均查找长度是结点在二叉搜索树的深度 的函数,即结点越深,则比较次数越多。

    但对于同一个关键码集合,如果各关键码插入的次序不同,可能得到不同结构的二叉搜索树:

    最优情况下,二叉搜索树为完全二叉树,其平均比较次数为:

    Java二叉搜索树增、插、删、创的示例分析

    最差情况下,二叉搜索树退化为单支树,其平均比较次数为:

    Java二叉搜索树增、插、删、创的示例分析

    ⑥完整代码

    public class TextDemo {
     
        public static class Node {
            public int val;
            public Node left;
            public Node right;
     
            public Node (int val) {
                this.val = val;
            }
        }
     
     
        public Node root;
     
        /**
         * 查找
         * @param key
         */
        public Node search(int key) {
            Node cur = root;
            while (cur != null) {
                if(cur.val == key) {
                    return cur;
                }else if(cur.val < key) {
                    cur = cur.right;
                }else {
                    cur = cur.left;
                }
            }
            return null;
        }
     
        /**
         *
         * @param key
         * @return
         */
        public boolean insert(int key) {
            Node node = new Node(key);
            if(root == null) {
                root = node;
                return true;
            }
     
            Node cur = root;
            Node parent = null;
     
            while(cur != null) {
                if(cur.val == key) {
                    return false;
                }else if(cur.val < key) {
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
            //parent
            if(parent.val > key) {
                parent.left = node;
            }else {
                parent.right = node;
            }
     
            return true;
        }
     
        public void remove(Node parent,Node cur) {
            if(cur.left == null) {
                if(cur == root) {
                    root = cur.right;
                }else if(cur == parent.left) {
                    parent.left = cur.right;
                }else {
                    parent.right = cur.right;
                }
            }else if(cur.right == null) {
                if(cur == root) {
                    root = cur.left;
                }else if(cur == parent.left) {
                    parent.left = cur.left;
                }else {
                    parent.right = cur.left;
                }
            }else {
                Node targetParent =  cur;
                Node target = cur.right;
                while (target.left != null) {
                    targetParent = target;
                    target = target.left;
                }
                cur.val = target.val;
                if(target == targetParent.left) {
                    targetParent.left = target.right;
                }else {
                    targetParent.right = target.right;
                }
            }
        }
     
        public void removeKey(int key) {
            if(root == null) {
                return;
            }
            Node cur = root;
            Node parent = null;
            while (cur != null) {
                if(cur.val == key) {
                    remove(parent,cur);
                    return;
                }else if(cur.val < key){
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
        }
     
    }

    以上是Java二叉搜索树的增、插、删和创建示例详解的详细内容。更多信息请关注PHP中文网其他相关文章!

    声明
    本文转载于:亿速云。如有侵权,请联系admin@php.cn删除
    如何将Maven或Gradle用于高级Java项目管理,构建自动化和依赖性解决方案?如何将Maven或Gradle用于高级Java项目管理,构建自动化和依赖性解决方案?Mar 17, 2025 pm 05:46 PM

    本文讨论了使用Maven和Gradle进行Java项目管理,构建自动化和依赖性解决方案,以比较其方法和优化策略。

    如何使用适当的版本控制和依赖项管理创建和使用自定义Java库(JAR文件)?如何使用适当的版本控制和依赖项管理创建和使用自定义Java库(JAR文件)?Mar 17, 2025 pm 05:45 PM

    本文使用Maven和Gradle之类的工具讨论了具有适当的版本控制和依赖关系管理的自定义Java库(JAR文件)的创建和使用。

    如何使用咖啡因或Guava Cache等库在Java应用程序中实现多层缓存?如何使用咖啡因或Guava Cache等库在Java应用程序中实现多层缓存?Mar 17, 2025 pm 05:44 PM

    本文讨论了使用咖啡因和Guava缓存在Java中实施多层缓存以提高应用程序性能。它涵盖设置,集成和绩效优势,以及配置和驱逐政策管理最佳PRA

    如何将JPA(Java持久性API)用于具有高级功能(例如缓存和懒惰加载)的对象相关映射?如何将JPA(Java持久性API)用于具有高级功能(例如缓存和懒惰加载)的对象相关映射?Mar 17, 2025 pm 05:43 PM

    本文讨论了使用JPA进行对象相关映射,并具有高级功能,例如缓存和懒惰加载。它涵盖了设置,实体映射和优化性能的最佳实践,同时突出潜在的陷阱。[159个字符]

    Java的类负载机制如何起作用,包括不同的类载荷及其委托模型?Java的类负载机制如何起作用,包括不同的类载荷及其委托模型?Mar 17, 2025 pm 05:35 PM

    Java的类上载涉及使用带有引导,扩展程序和应用程序类负载器的分层系统加载,链接和初始化类。父代授权模型确保首先加载核心类别,从而影响自定义类LOA

    See all articles

    热AI工具

    Undresser.AI Undress

    Undresser.AI Undress

    人工智能驱动的应用程序,用于创建逼真的裸体照片

    AI Clothes Remover

    AI Clothes Remover

    用于从照片中去除衣服的在线人工智能工具。

    Undress AI Tool

    Undress AI Tool

    免费脱衣服图片

    Clothoff.io

    Clothoff.io

    AI脱衣机

    AI Hentai Generator

    AI Hentai Generator

    免费生成ai无尽的。

    热门文章

    R.E.P.O.能量晶体解释及其做什么(黄色晶体)
    3 周前By尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O.最佳图形设置
    3 周前By尊渡假赌尊渡假赌尊渡假赌
    R.E.P.O.如果您听不到任何人,如何修复音频
    3 周前By尊渡假赌尊渡假赌尊渡假赌
    WWE 2K25:如何解锁Myrise中的所有内容
    4 周前By尊渡假赌尊渡假赌尊渡假赌

    热工具

    DVWA

    DVWA

    Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

    VSCode Windows 64位 下载

    VSCode Windows 64位 下载

    微软推出的免费、功能强大的一款IDE编辑器

    MinGW - 适用于 Windows 的极简 GNU

    MinGW - 适用于 Windows 的极简 GNU

    这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

    ZendStudio 13.5.1 Mac

    ZendStudio 13.5.1 Mac

    功能强大的PHP集成开发环境

    WebStorm Mac版

    WebStorm Mac版

    好用的JavaScript开发工具